Устройство подводной лодки. Как устроена подводная лодка: описание, характеристики и принцип работы

Принципы и устройство подводной лодки

Принципы действия и устройство подводной лодки рассматриваются вместе, так как они тесно связаны. Определяющим является принцип подводного плавания. Отсюда, основные требования к ПЛ это:

  • выдерживать давление воды в подводном положении, то есть обеспечивать прочность и водонепроницаемость корпуса.
  • обеспечивать управляемые погружение, всплытие, и смену глубины.
  • иметь оптимальное с точки зрения ходкости обтекание
  • сохранять работоспособность (боеспособность) во всём диапазоне эксплуатации по физическим, климатическим условиям и условиям автономности.

Устройство одной из первых субмарин, «Пионер», 1862

Схема устройства подводной лодки

Прочность и водонепроницаемость

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого , или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка еще может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы легкого корпуса обеспечивают оптимальное обтекание на расчетном ходу. В подводном положении внутри легкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС , тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные: цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Легкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса.
    Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность.
    Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными.
    Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные: (ЦГБ внутри легкого корпуса, легкий корпус полностью закрывает прочный). У двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри.
    Достоинства: повышенный запас плавучести, более живучая конструкция.
    Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии.
    По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные: (ЦГБ внутри легкого корпуса, легкий корпус частично закрывает прочный).
    Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести.
    Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус.
    Такой конструкцией отличались средние ПЛ времен Второй мировой войны , например немецкие типа VII , и первые послевоенные, например тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объем над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапана вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка (вид через нижний рубочный люк)

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через нее же обычно пропущены шахты перископов . Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией , опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Реже - ограждение выдвижных устройств. Устанавливается вокруг прочной рубки, чтобы улучшить обтекание ее и выдвижных устройств. Оно же формирует ходовой мостик. Выполняется легким.

Погружение и всплытие

Когда требуется срочное погружение, используют цистерну быстрого погружения (ЦБП, иногда называется цистерной срочного погружения). Ее объем не входит в расчетный запас плавучести, то есть приняв в нее балласт, лодка становится тяжелее окружающей воды, что помогает «провалиться» на глубину. После этого, разумеется, цистерна быстрого погружения немедленно продувается. Она находится в прочном корпусе и выполняется прочной.

В боевой обстановке (в том числе на боевой службе и в походе) немедленно после всплытия лодка принимает воду в ЦБП, и компенсирует ее вес, поддувая главный балласт - сохраняя некоторое избыточное давление в ЦГБ. Таким образом, лодка находится в немедленной готовности к срочному погружению.

Среди важнейших специальных цистерн :

Торпедо- и ракетозаместительные цистерны.

Чтобы сохранить общую нагрузку после выхода торпед или ракет из ТА / шахт, и предотвратить самопроизвольное всплытие, поступившую в них воду (около тонны на каждую торпеду, десятки тонн на ракету) не откачивают за борт, а сливают в специально предназначенные цистерны. Это позволяет не нарушать работы с ЦГБ и ограничить объем уравнительной цистерны.

Если попытаться компенсировать вес торпед и ракет за счет главного балласта, тот должен быть переменным, то есть в ЦГБ должен оставаться пузырь воздуха, а он «гуляет» (подвижен) - наихудшая для дифферентовки ситуация. Погруженная ПЛ при этом практически теряет управляемость , по выражению одного автора, «ведет себя как взбесившаяся лошадь». В меньшей степени это справедливо и для уравнительной цистерны. Но главное, если ею компенсировать большие грузы, придется увеличить ее объем, а значит, количество сжатого воздуха, необходимого для продувания. А запас сжатого воздуха на лодке - самое ценное, его всегда мало и он трудно восполним.

Цистерны кольцевого зазора

Между торпедой (ракетой) и стенкой торпедного аппарата (шахты) всегда имеется зазор, особенно в головной и хвостовой частях. Перед выстрелом наружную крышку торпедного аппарата (шахты) нужно открыть. Сделать это можно, только сравняв давление за бортом и внутри, то есть заполнив ТА (шахту) водой, сообщающейся с забортной. Но если впустить воду непосредственно из-за борта, дифферентовка будет сбита - прямо перед выстрелом.

Чтобы этого избежать, воду, необходимую для заполнения зазора, хранят в специальных цистернах кольцевого зазора (ЦКЗ). Они находятся вблизи ТА или шахт, и заполняются из уравнительной цистерны. После этого для выравнивания давления достаточно перепустить воду из ЦКЗ в ТА, и открыть забортный клапан.

Энергетика и живучесть

Понятно, что ни заполнение и продувка цистерн, ни выстрел торпед или ракет, ни движение или даже вентиляция не происходят сами собой. Подводная лодка - не квартира, где можно открыть форточку, и свежий воздух сам заменит использованный. На все это нужны затраты энергии.

Соответственно, без энергии лодка не может не только двигаться, но сколько-нибудь долго сохранять способность «плавать и стрелять». То есть, энергетика и живучесть - две стороны одного процесса.

Если с движением можно подобрать традиционные для корабля решения - использовать энергию сжигаемого топлива (если для этого достаточно кислорода), или энергию расщепления атома, то для действий, свойственных только подводной лодке, нужны другие источники энергии. Даже ядерный реактор, дающий практически неограниченный ее источник, имеет недостаток - он вырабатывает её только в определённом темпе, и очень неохотно темп меняет. Попытаться получить с него больше мощности значит рисковать, что реакция выйдет из-под контроля - этакий ядерный мини-взрыв.

Значит, нужен какой-то способ запасать энергию, и быстро высвобождать по мере надобности. И сжатый воздух с зарождения подводного плавания остаётся самым лучшим способом. Единственный серьёзный недостаток его в ограниченности запасов. Баллоны для хранения воздуха имеют немалый вес, и тем больше, чем больше давление в них. Это и ставит предел запасам.

Воздушная система

Основная статья: Воздушная система

Сжатый воздух является вторым по значению источником энергии на лодке и, во вторую очередь, даёт запас кислорода. С его помощью производится множество эволюций - от погружения и всплытия до удаления из лодки отходов.

Например, бороться с аварийным затоплением отсеков можно подачей в них сжатого воздуха. Торпеды и ракеты выстреливаются тоже воздухом - по сути, продуванием ТА или шахт.

Воздушная система подразделяется на систему воздуха высокого давления (ВВД), воздуха среднего давления (ВСД) и воздуха низкого давления (ВНД).

Система ВВД является среди них главной. Хранить сжатый воздух выгоднее под высоким давлением - занимает меньше места и аккумулирует больше энергии. Поэтому его хранят в баллонах ВВД, а в другие подсистемы отпускают через редукторы давления.

Пополнение запасов ВВД - долгая и энергоёмкая операция. И конечно, она требует доступа к атмосферному воздуху. Учитывая, что современные лодки большую часть времени проводят под водой, и на перископной глубине стараются тоже не задерживаться, возможностей для пополнения не так много. Сжатый воздух приходится буквально рационировать, и обычно следит за этим лично старший механик (командир БЧ-5).

Движение

Движение, или ход ПЛ - главный потребитель энергии. В зависимости от того, как обеспечивается надводный и подводный ход, все ПЛ можно разделить на два больших типа: с раздельным или с единым двигателем .

Раздельным называется двигатель, который используется только для надводного или только для подводного хода. Единым , соответственно, называется двигатель, который годится для обоих режимов.

Исторически первым двигателем ПЛ был человек. Своей мускульной силой он приводил лодку в движение как на поверхности, так и под водой. То есть, был единым двигателем.

Поиск более мощных и дальноходных двигателей был прямо связан с развитием техники вообще. Он прошёл через паровую машину и различные типы двигателей внутреннего сгорания к дизелю . Но все они имеют общий недостаток - зависимость от атмосферного воздуха. Неизбежно возникает раздельность , то есть нужда во втором двигателе, для подводного хода. Дополнительное требование к двигателям подводных лодок - низкий уровень производимого шума. Бесшумность подлодки в режиме подкрадывания необходима для сохранения её незаметности от противника при выполнении боевых задач в непосредственной близости от него.

Традиционно двигателем подводного хода был и остаётся электромотор , питающийся от аккумуляторной батареи. Он воздухонезависим, достаточно безопасен и приемлем по весу и габаритам. Однако и тут есть серьёзный недостаток - малая ёмкость батареи. Поэтому запас непрерывного подводного хода ограничен. Мало того, он зависит от режима использования. Типичной дизель-электрической ПЛ требуется подзаряжать батарею после каждых 300÷350 миль экономического хода, или каждых 20÷30 миль полного хода. Иными словами, лодка может пройти без подзарядки 3 и более суток со скоростью в 2÷4 узла, или час-полтора со скоростью более 20 узлов. Поскольку вес и объём дизельной ПЛ ограничены, дизель и электромотор выступают в нескольких ролях. Дизель может быть двигателем, или поршневым компрессором , если его вращает электромотор. Тот, в свою очередь, может быть генератором , когда его вращает дизель, или двигателем, когда работает на винт.

Были попытки создать единый парогазовый двигатель. Немецкие ПЛ Вальтера использовали в качестве топлива концентрированную перекись водорода . Она оказалась слишком взрывоопасной, дорогой и нестабильной для широкого применения.

Только с созданием пригодного для ПЛ ядерного реактора появился поистине единый двигатель, дающий ход в любом положении неограниченно долго. Поэтому возникло деление подводных лодок на атомные и неатомные .

Существуют ПЛ с неатомным единым двигателем. Например, шведские лодки типа «Наккен» с двигателем Стирлинга . Однако они лишь удлинили время подводного хода, не избавив лодку от необходимости всплывать для пополнения запасов кислорода. Широкого применения этот двигатель пока не нашёл.

Электро-энергетическая Система (ЭЭС)

Основными элементами системы являются генераторы , преобразователи , хранилища, проводники и потребители энергии.

Поскольку большинство ПЛ в мире - дизель-электрические, они имеют характерные особенности в схеме и составе ЭЭС. В классической системе дизель-электрической ПЛ электромотор используется как обратимая машина, то есть может потреблять ток для движения, или вырабатывать его для зарядки. В такой системе имеются:

Главный дизель . Является двигателем надводного хода и приводом генератора. Также играет второстепенную роль как поршневой компрессор . Главный распределительный щит (ГРЩ). Преобразует ток генератора в постоянный ток зарядки АБ или наоборот, и раздаёт энергию потребителям. Гребной электродвигатель (ГЭД). Основным его назначением является работа на винт. Может также играть роль генератора . Аккумуляторная батарея (АБ). Запасает и хранит электроэнергию от генератора, выдаёт её для расходования когда генератор не работает - прежде всего под водой. Электроарматура . Кабеля , прерыватели, изоляторы . Их назначение - связь остальных элементов системы, передача энергии потребителям и предотвращение её утечек.

Для такой ПЛ характерными режимами являются:

  1. Винт-зарядка . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, заряжая АБ.
  2. Винт-расход . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, который снабжает потребителей.
  3. Частичное электродвижение . Дизеля работают на генератор, часть энергии которого потребляется электродвигателем, другая часть идёт на зарядку АБ.
  4. Полное электродвижение . Дизеля работают на генератор, вся энергия которого потребляется электродвигателем.

В некоторых случаях в системе имеются ещё отдельные дизель-генераторы (ДГ) и электродвигатель экономического хода (ЭДЭХ). Последний используется для малошумного экономичного режима «подкрадывания» к цели.

Основной проблемой хранения и передачи электроэнергии является сопротивление элементов ЭЭС. В отличие от наземных агрегатов, сопротивление в условиях высокой влажности и насыщенности оборудованием ПЛ - величина сильно переменная. Одной из постоянных задач команды электриков является контроль изоляции и восстановление её сопротивления до штатного.

Второй серьёзной проблемой является состояние аккумуляторных батарей. В результате химической реакции в них генерируется тепло и выделяется водород . Если свободный водород накопится в определённой концентрации, он образует с кислородом воздуха гремучую смесь, способную взрываться не хуже глубинной бомбы. Перегретая же батарея в тесном трюме служит причиной весьма характерного для лодок ЧП - пожара в аккумуляторной яме.

При попадании в батарею морской воды выделяется хлор , образующий крайне ядовитые и взрывоопасные соединения. Смесь водорода с хлором взрывается даже от света. Учитывая, что вероятность попадания забортной воды в помещения лодки всегда высока, требуется постоянный контроль за содержанием хлора и вентилирование аккумуляторных ям.

В подводном положении для связывания водорода используются приборы беспламенного (каталитического) дожигания водорода - КПЧ, устанавливаемые в отсеках подводной лодки и печи дожига водорода, встроенные в систему вентиляции аккумуляторной батареи. Полное удаление водорода возможно только вентилированием АБ. Поэтому на ходовой лодке даже в базе несётся вахта в центральном посту и в посту энергетики и живучести (ПЭЖ). Одна из её задач - контроль содержания водорода и вентилирование аккумуляторной батареи.

Топливная система

На дизель-электрических, и в меньшей степени, на атомных ПЛ используется дизельное топливо - соляр. Объём хранимого топлива может составлять до 30 % водоизмещения. Причём это переменный запас, а значит он представляет серьёзную задачу при расчёте дифферентовки.

Соляр достаточно легко отделяется от морской воды отстаиванием, при этом практически не смешивается, поэтому применяют такую схему. Топливные цистерны располагаются в нижней части лёгкого корпуса. По мере расходования топлива оно замещается забортной водой. Поскольку разница плотностей соляра и воды примерно 0,8 к 1.0, соблюдается порядок расходования, например: носовая цистерна левого борта, затем кормовая правого, затем носовая цистерна правого, и так далее, чтобы изменения в дифферентовке были минимальны.

Водоотливная система

Как следует из названия, предназначена для удаления воды из ПЛ. Состоит из насосов (помп), трубопроводов и арматуры. Имеет водоотливные помпы для быстрой откачки больших количеств воды, и осушительные для полного её удаления.

Основу её составляют центробежные помпы, с большой производительностью. Поскольку их подача зависит от противодавления, и значит, падает с глубиной, то имеются и помпы, подача которых от противодавления не зависит - поршневые. Например, на ПЛ пр.633 производительность водоотливных средств на поверхности составляет 250 м³/ч, на рабочей глубине 60 м³/ч.

Противопожарная система

Противопожарная система ПЛ состоит из подсистем четырёх видов. По сути, лодка имеет четыре независимых системы тушения :

  1. Система воздушно-пенного пожаротушения (ВПЛ);
  2. Система водяного пожаротушения;
  3. Огнетушители и противопожарное имущество (асбестовое полотно, брезент и т. п).

При этом, в отличие от стационарных, наземных систем, водяное тушение не является основным. Наоборот, руководство по борьбе за живучесть (РБЖ ПЛ), нацеливает на использование в первую очередь объёмной и воздушно-пенной систем. Причина этому - большая насыщенность ПЛ оборудованием, а значит, высокая вероятность повреждений от воды, коротких замыканий, выделения вредных газов.

Кроме того, имеются системы предотвращения пожаров:

  • система орошения шахт (контейнеров) ракетного оружия - на ракетных ПЛ;
  • система орошения боеприпаса, хранящегося на стеллажах в отсеках ПЛ;
  • система орошения межотсечных переборок;

Cистема объёмного химического пожаротушения (ЛОХ)

Система Лодочная, Объёмная, Химическая (ЛОХ) предназначена для тушения пожаров в отсеках ПЛ (кроме пожаров порохов, взрывчатых веществ и двухкомпонентного ракетного топлива). Основана на прерывании цепной реакции горения при участии кислорода воздуха гасящим агентом на основе фреона. Основное её достоинство - универсальность. Однако запас фреона ограничен, и потому использование ЛОХ рекомендуется только в определённых случаях.

Система воздушно-пенного пожаротушения (ВПЛ)

Система Воздушно-пенная, Лодочная (ВПЛ) предназначена для тушения небольших местных возгораний в отсеках:

  • электрооборудования, находящегося под напряжением;
  • скопившегося в трюме топлива, масла или других легковоспламеняющихся жидкостей;
  • материалов в аккумуляторной яме;
  • ветоши, деревянной обшивки, теплоизоляционных материалов.

Система водяного пожаротушения

Система предназначена для тушения пожара в надстройке ПЛ и ограждении рубки, а также пожаров топлива, пролитого на воде вблизи ПЛ. Иными словами, не предназначена для тушения внутри прочного корпуса ПЛ.

Огнетушители и пожарное имущество

Предназначены для тушения возгораний ветоши, деревянной обшивки, электроизоляционных и теплоизоляционных материалов и обеспечения действий личного состава при тушении пожара. Иначе говоря, играют вспомогательную роль в случаях, когда использование централизованных систем пожаротушения затруднено или невозможно.

  • Все системы и устройства подводной лодки настолько тесно связаны с живучестью и зависят друг от друга, что всякий, кто допускается на борт хотя бы временно, должен сдать зачёт по устройству и правилам безопасности на ПЛ, включая особенности конкретного корабля, на который получает доступ.
  • Википедия - Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Для этого термина существует аббревиатура «ПЛА», но под этим сокращением могут пониматься другие значения: см. ПЛА (значения). Для этого термина существует аббревиатура «АПЛ», но под этим сокращением могут пониматься другие значения: см. АПЛ… … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 верхний стрингер ЛК, 7 киль Назначение системы погружения и всплытия подводной лодки (ПЛ) полностью… … Википедия

Класс кораблей, способных погружаться на глубину и действовать в подводном положении, называют подводными лодками.

Надводный корабль, благодаря действию выталкивающей силы, находится на поверхности воды. Но подводная лодка кроме надводного положения должна погружаться, идти на глубине и всплывать.

Плавучесть подводной лодки

Одно из основных мореходных качеств подводной лодки – плавучесть, благодаря которому она может находиться в двух положениях: надводном и подводном.

Плавучестью в физике называют способность тела, погружённого в жидкость, оставаться в равновесии, не погружаясь и не выходя из жидкости. А под плавучестью корабля понимают его способность оставаться на плаву при заданной нагрузке.

В надводном положении плавучесть подводной лодки характеризуют запасом плавучести , то есть, процентным отношением водонепроницаемых объёмов ПЛ выше ватерлинии ко всему водонепроницаемому объёму. Чем выше её корпус выступает из воды, тем больше запас плавучести.

W = V н / V o * 100

где V н - водонепроницаемый объём ПЛ выше ватерлинии,

V o – весь водонепроницаемый объём ПЛ.

Чтобы ПЛ полностью погрузилась в воду, запас её плавучести должен стать нулевым, или нейтральным. Это означает, что по закону Архимеда её вес должен равняться весу вытесненной воды. То есть, вес лодки нужно увеличить. Но как это сделать? Очень просто - принять на борт дополнительный груз. Подводники называют его балластом. Им становится забортная вода, которой заполняют балластные цистерны на борту ПЛ.

Но объём балласта должен быть рассчитан очень точно. Ведь если вес принятого груза окажется больше веса полностью погруженной лодки, она не будет плавать в подводном положении, а продолжит погружаться, пока не достигнет грунта, или не разрушится её прочный корпус.

После полного погружения лодка меняет глубину с помощью рулей.

Для всплытия балласт продувается, то есть, вода выдувается из балластных цистерн сжатым воздухом, запасы которого всегда есть на борту. Вес лодки становится меньше. Она приобретает положительную плавучесть и всплывает.

На практике и вес подводной лодки, и плотность воды не остаются постоянными. А любая, даже самая незначительная разница между весом подводной лодки и выталкивающей силой заставляла бы её подниматься на поверхность или опускаться на дно. Для устранения такой ситуации служат горизонтальные рули. Они управляют движением подводной лодки в вертикальной плоскости.

Как устроена подводная лодка

Подводная лодка погружается на большие глубины, где давление воды огромное. Поэтому её корпус должен быть очень прочным.

Современная подводная лодка имеет 2 корпуса: водопроницаемый лёгкий корпус и водонепроницаемый прочный корпус.

Лёгкий корпус предназначен для придания лодке совершенных гидродинамических форм. В подводном положении внутри него находится вода, поэтому ему и не нужно быть прочным.

А прочный корпус, находящийся внутри лёгкого, способен выдержать огромное давление воды на большой глубине. От того, насколько он прочный, зависит глубина погружения лодки. Внутри прочный корпус разделён переборками на отсеки . Это сделано из соображений безопасности. При возникновении нештатной ситуации: пробоины или пожара, отсек герметизируется. Это повышает живучесть корабля.

На ПЛ имеются различные цистерны. В них хранятся запасы питьевой воды, топлива, сжатого воздуха и т.д.

Цистерны, которые заполняются забортной водой, и служат для изменения плавучести, называются цистернами главного балласта (ЦГБ). Они разбиты на 3 группы: носовую, кормовую и среднюю. Они могут заполняться и продуваться одновременно или независимо друг от друга. Их объём постоянен. Однако на практике действительный запас плавучести и расчётный могут отличаться. В теории это называется остаточная плавучесть подводной лодки . Для устранения разницы между объёмом цистерн главного балласта и объёмом воды, которую нужно принять для полного погружения, используют цистерны вспомогательного балласта . Остаточную плавучесть погашают, принимая или откачивая воду в уравнительную цистерну .

Для срочного погружения используют цистерну быстрого погружения . В неё принимают балласт, и лодка быстро погружается. После этого цистерна быстрого погружения немедленно продувается сжатым воздухом для удаления балласта.

После выхода торпед или ракет в торпедные аппараты или ракетные шахты поступает вода. Её сливают в специальные торпедо- и ракетозаместительные цистерны , чтобы сохранить общую нагрузку.

Движение в надводном положении дизель-электрической подводной лодки обеспечивает дизель , который является и двигателем, и приводом генератора. Генератор вырабатывает электрическую энергию. Его энергию запасает аккумуляторная батарея . В подводном положении она её выдаёт.

Источник энергии на атомной подводной лодке – ядерный реактор .

Другим источником энергии на ПЛ служит сжатый воздух . С его помощью заполняются и продуваются цистерны, выстреливаются торпеды. Он служит источником кислорода. При аварийном затоплении отсеков их продувают сжатым воздухом.

Подводный аппарат батискаф

Увеличение веса ПЛ происходит вытеснением воды сжатым воздухом. Но на большой глубине воздух перестаёт быть «сжатым». Он уже не может вытеснить воду из балластных цистерн. А в подводном аппарате батискафе в качестве балласта применяется тяжёлый груз, который позволяет погружаться, и сбрасывается, когда нужно всплывать.

Как и ПЛ, батискаф имеет 2 корпуса – лёгкий и прочный . Лёгкий называют поплавком . В его отсеках находится вещество легче воды. В первых батискафах использовали бензин. Позднее стали применять композитный материал.

Экипаж, приборы и другие системы размещаются в прочном корпусе, который называется гондолой .

Батискафы могут погружаться на гораздо большую глубину, чем лодки. Они способны достичь предельных океанских глубин.

Справочник по морской практике Автор неизвестен

1.3. Устройство подводной лодки

Подводные лодки – особый класс боевых кораблей, которые кроме всех качеств военных кораблей обладают способностью плавать под водой, маневрируя по курсу и глубине. По конструктивному исполнению (рис. 1.20) подводные лодки бывают:

– о д н о к о р п у с н ы е, имеющие один прочный корпус, который заканчивается в носу и корме хорошо обтекаемыми оконечностями легкой конструкции;

– п о л у т о р а к о р п у с н ы е, имеющие кроме прочного корпуса еще и легкий, но не по всему обводу прочного корпуса;

– д в у к о р п у с н ы е, имеющие два корпуса – прочный и легкий, причем последний полностью облегает по периметру прочный и простирается на всю длину лодки. В настоящее время большинство подводных лодок являются двукорпусными.

Рис. 1.20. Конструктивные типы подводных лодок:

а – однокорпусная; б – полуторакорпусная; в – двукорпусная; 1 – прочный корпус; 2 – боевая рубка; 3 – надстройка; 4 – киль; 5 – легкий корпус

Прочный корпус – основной конструктивный элемент подводной лодки, обеспечивающий безопасное нахождение ее на предельной глубине. Он образует замкнутый объем, непроницаемый для воды. Пространство внутри прочного корпуса (рис. 1.21) разделяется поперечными водонепроницаемыми переборками на отсеки, которые называются в зависимости от характера вооружения и оборудования, располагающихся в них.

Рис. 1.21. продольный разрез дизель-аккумуляторной подводной лодки:

1 – прочный корпус; 2 – носовые торпедные аппарты; 3 – легкий корпус; носовой торпедный отсек; 5 – торпеднопогрузочный люк; 6 – надстройка; 7 – прочная боевая рубка; 8 – ограждение рубки; 9 – выдвижные устройства; 10 – входной люк; 11 – кормовые торпедные аппараты; 12 – кормовая оконечность; 13 – перо руля; 14 – кормовая дифферентная цистерна; 15 – концевая (кормовая) водонепроницаемая переборка; 16 – кормовой торпедный отсек; 17 – внутренняя водонепроницаемая переборка; 18 – отсек главных гребных электродвигателей и электростанция; 19 – балластная цистерна; 20 – машинный отсек; 21 – топливная цистерна; 22 , 26 – кормовая и носовая группы аккумуляторных батарей; 23, 27 – жилые помещения команды; 24 – центральный пост; 25 – трюм центрального поста; 28 – носовая дифферентная цистерна; 29 – концевая (носовая) водонепроницаемая переборка; 30 – носовая оконечность; 31 – цистерна плавучести.

Внутри прочного корпуса размещаются помещения для личного состава, главные и вспомогательные механизмы, оружие, различные системы и устройства, носовая и кормовая группы аккумуляторных батарей, различные запасы и т. п. На современных подводных лодках вес прочного корпуса в общем весе корабля составляет 16-25%; в весе только корпусных конструкций – 50-65%.

Конструктивно прочный корпус состоит из шпангоутов и обшивки. Ш п а н г о у т ы имеют, как правило, кольцевую, а в оконечностях эллиптическую форму и изготовляются из профильной стали. Устанавливаются они один от другого на расстоянии 300-700 мм в зависимости от конструкции лодки как с внутренней, .так и с наружной стороны обшивки корпуса, а иногда и комбинированно с той и другой стороны вплотную.

О б ш и в к а прочного корпуса изготовляется из специальной прокатной листовой стали и приваривается к шпангоутам. Толщина листов обшивки доходит до 35 мм в зависимости от диаметра прочного корпуса и предельной глубины погружения подводной лодки.

П е р е б о р к и прочного корпуса бывают прочные и легкие. Прочные переборки делят внутренний объем современных подводных лодок на 6-10 водонепроницаемых отсеков и обеспечивают подводную непотопляемость корабля. По расположению они бывают внутренними и концевыми; по форме – плоскими и сферическими.

Легкие переборки предназначены для обеспечения надводной непотопляемости корабля. Конструктивно переборки выполняются из набора и обшивки. Набор переборки обычно состоит из нескольких вертикальных и поперечных стоек (балок). Обшивка изготовляется из листовой стали.

Концевые водонепроницаемые переборки обычно равнопрочны с прочным корпусом и замыкают его в носовой и кормовой частях. Эти переборки служат на большинстве подводных лодок жесткими опорами для торпедных аппаратов.

Отсеки сообщаются через водонепроницаемые двери, имеющие круглую или прямоугольную форму. Эти двери снабжены быстродействующими запирающими устройствами.

В вертикальном направлении отсеки разделяются платформами на верхнюю и нижнюю части, а иногда помещения лодки имеют многоярусное расположение, что увеличивает полезную площадь платформ, приходящуюся на единицу объема. Расстояние между платформами «в свету» делается более 2 м, т. е. несколько большим, чем средний рост человека.

В верхней части прочного корпуса устанавливается прочная (боевая) рубка, сообщающаяся через рубочный люк с центральным постом, под которым расположен трюм. На большинстве современных подводных лодок прочная рубка выполняется в виде круглого цилиндра небольшой высоты. Снаружи прочная рубка и устройства, расположенные за ней, для улучшения обтекания при движении в подводном положении закрываются легкими конструкциями, которые называются ограждением рубки. Обшивка рубки изготовляется из листовой стали той же марки, что и прочный корпус. Торпедо- погрузочный и входные люки располагаются также вверху прочного корпуса.

Ц и с т е р н ы предназначены для погружения, всплытия, удифферентования лодки, а также для хранения жидких грузов. В зависимости от назначения бывают цистерны: главного балласта, вспомогательного балласта, корабельных запасов и специальные. Конструктивно они выполняются либо прочными, т. е. рассчитанными на предельную глубину погружения, либо легкими, способными выдерживать давление 1-3 кг/см2. Они располагаются внутри прочного корпуса, между прочным и легким корпусом и в оконечностях.

К и л ь – сварная или клепаная балка коробчатого, трапециевидного, Т-образного, а иногда и полуцилиндрического сечения, привариваемая к днищевой части корпуса лодки. Он предназначен для усиления продольной прочности, предохранения корпуса от повреждения при покладке на каменистый грунт и постановке на клетку дока.

Легкий корпус (рис. 1.22) – жесткий каркас, состоящий из шпангоутов, стрингеров, поперечных непроницаемых переборок и обшивки. Он придает подводной лодке хорошо обтекаемую форму. Легкий корпус состоит из наружного корпуса, носовой и кормовой оконечностей, палубной надстройки, ограждения рубки. Форму легкого корпуса полностью определяют наружные обводы корабля.

Рис. 1.22. Поперечный разрез полуторакорпусной подводной лодки:

1 – ходовой мостик; 2 – боевая рубка; 3 – надстройка; 4 – стрингер; 5 – уравнительная цистерна; 6 – подкрепляющая стойка; 7, 9 – кницы; 8- платформа; 10 – коробчатый киль; 11 – фундамент главных дизелей; 12 – обшивка прочного корпуса; 13 – шпангоуты прочного корпуса; 14 – цистерна главного балласта; 15 – раскосные стойки; 16 – крышка цистерны; 17 – обшивка легкого корпуса; 18 – шпангоут легкого корпуса; 19 – верхняя палуба

Наружным корпусом называется водонепроницаемая часть легкого корпуса, расположенная вдоль прочного корпуса. Он закрывает прочный корпус по периметру поперечного сечения лодки от киля до верхнего водонепроницаемого стрингера и простирается по длине корабля от носовой до кормовой концевых переборок прочного корпуса. Ледовый пояс легкого корпуса располагается в районе крейсерской ватерлинии и простирается от носовой оконечности до миделя; ширина пояса около 1 ж, толщина листов – 8 мм.

Оконечности легкого корпуса служат для придания обтекаемости обводам носа и кормы подводной лодки и простираются от концевых переборок прочного корпуса до форштевня и ахтерштевня соответственно.

В носовой оконечности размещаются: носовые торпедные аппараты, цистерны главного балласта и плавучести, цепной ящик, якорное устройство, гидроакустические приемники и излучатели. Конструктивно она состоит из обшивки и сложной системы набора. Выполняется из листовой стали того же качества, что и наружный корпус.

Форштевень – кованая или сварная балка, обеспечивает жесткость носовой кромки корпуса лодки.

В кормовой оконечности (рис. 1.23) размещаются: кормовые торпедные аппараты, цистерны главного балласта, горизонтальные и вертикальные рули, стабилизаторы, гребные валы с мортирами.

Рис. 1.23. Схема кормовых выступающих устройств:

1 – вертикальный стабилизатор; 2 – вертикальный руль; 3 – гребной винт; 4 – горизонтальный руль; 5 – горизонтальный стабилизатор

Ахтерштевень – балка сложного сечения, обычно сварная; обеспечивает жесткость кормовой кромки корпуса подводной лодки.

Горизонтальные и вертикальные стабилизаторы придают при движении устойчивость подводной лодке. Через горизонтальные стабилизаторы (при двухвальной энергетической установке) проходят гребные валы, на концах которых устанавливаются гребные винты. За гребными винтами в одной плоскости со стабилизаторами устанавливаются кормовые горизонтальные рули.

Конструктивно кормовая оконечность состоит из набора и обшивки. Набор выполняется из стрингеров, рамных и простых шпангоутов, платформ и переборок. Обшивка равнопрочна с наружным корпусом.

Надстройка (рис. 1.24) располагается выше верхнего водонепроницаемого стрингера наружного корпуса и простирается по всей длине прочного корпуса, переходя за его пределами в оконечности. Конструктивно надстройка состоит из обшивки и набора. В надстройке располагаются: различные системы, устройства, носовые горизонтальные рули и др.

Рис. 1.24. Надстройка подводной лодки:

1 – кницы; 2 – отверстия в палубе; 3 – палуба надстройки; 4 – борт надстройки; 5 – шпигаты; 6- пиллерс; 7 – крышка цистерны; 8 – обшивка прочного корпуса; 9 – шпангоут прочного корпуса; 10 – обшивка легкого корпуса; 11 – водонепроницаемый стрингер наружного корпуса; 12 – шпангоут легкого корпуса; 13 – шпангоут надстройки

Выдвижные устройства (рис. 1.25). Современная подводная лодка имеет большое число различных устройств и систем, которые обеспечивают управление ее маневрами, использование оружия, живучесть, нормальную работу энергетической установки и других технических средств в различных условиях плавания.

Рис. 1.25. Выдвижные устройства и системы подводной лодки:

1 – перископ; 2 – радиоантенны (выдвижные); 3 – радиолокационные антенны; 4 – воздушная шахта для работы дизеля под водой (РДП); 5 – выхлопное устройство РДП; 6 – радиоантенна (заваливающаяся)

К таким устройствам и системам, в частности, относятся: радиоантенны (заваливающиеся и выдвижные), выхлопное устройство для работы дизеля под водой (РДП), воздушная шахта РДП, радиолокационные антенны, перископы и др.

Атомная подводная лодка проекта 949А (шифр «Антей») создана на базе проекта 949 путем врезки дополнительного отсека (пятого) с целью размещения новой аппаратуры, для удобства компоновки. Внешний вид её весьма примечательный- оставив прочный корпус цилиндрическим на всем протяжении, а пусковые установки разместив по бортам, между прочным и легким корпусами, конструкторы получили весьма «широкоплечую» лодку, которая на фотографиях с носовых ракурсов напоминает батон. На прототипе- проекте 661 в районе ракетных шахт корпус в сечении имел форму «восьмерки».

Краткие характеристики проекта 949 («Гранит», первые два корпуса): водоизмещение надводное- 12500 т, полное подводное- 22500 т, размерения- 144 х 18 х 9,2 м, скорость надводная- 16 уз, подводная- 32 уз, мощность- 98000 л.с. Экипаж- 94 чел.

Основные характеристики модернизированного проекта 949А следующие: водоизмещение надводное- 14820 т, надводное полное- 15100 т, подводное- 19254 т, полное подводное (с учетом объема легкого корпуса)- 25650 т, что всего на 1000 тонн меньше, чем у надводных тяжелых атомных крейсеров типа «Киров»! Запас плавучести составляет 29,9 %, лодка сохраняет надводную (не подводную) плавучесть при затоплении одного отсека. Полная длина- 154,8 м, ширина- ровно 18 м, осадка в крейсерском положении носом- 9,1 м, на миделе- 9,3 м и кормой- 9,5 м, высота от киля до верха ограждения рубки- 18,3 м. Длина легкого корпуса- 151,8 м. Ширина лодки по кормовым горизонтальным рулям- 22 м, по НГР (в выдвинутом положении)- 24 м.

Прочный корпус лодки длиной 122 м разделен на 10 отсеков, имеет переменный диаметр, рассчитан на предельную глубину погружения в 600 метров, более которой корпус разрушается (толщина прочных стенок из стали АК-33 при этом получилась от 45 до 68 мм), рабочая глубина составляет 480 м. Концевые переборки прочного корпуса литые, сферические, радиус носовой 8 м, радиус кормовой- 6,5 м. Поперечные переборки плоские, между первым и вторым, а также между четвертым и пятыми отсеками рассчитаны на давление 40 атмосфер и имеют толщину до 20 мм. Таким образом, лодка разделена на три отсека- убежища для аварий на глубинах до 400 метров: при затоплении части прочного корпуса люди в этом случае имеют шанс спастись или в первом отсеке, или во втором- третьем, или же в кормовых отсеках. При аварии «Курска» так и получилось- более того, переборка кормового отсека- убежища выдержала основной удар от взрыва! Остальные переборки внутри зон спасения рассчитаны на 10 атмосфер (для глубины не более 100 метров).

ПЕРВЫЙ ОТСЕК: разделен платформами на три яруса. Внизу, в трюме, расположены компрессор воздуха высокого давления (ВВД) ЭКСА-25, вентиляторы и в специальной выгородке- носовая аккумуляторная батарея (112 элементов изделия 440). Над ними- газоплотный настил, рассчитанный на давление 0,1 атм. На второй палубе- стойки аппаратуры ГАК «Скат-3» (основной объем), станции воздушно- пенного пожаротушения (ВПЛ) и объемно- химического пожаротушения (ЛОХ), трапы.

Здесь же, по бортам, имеются входные люки в специальные були (прочные выгородки за бортом), в которых находятся приводы носовых горизонтальных рулей. Между второй палубой и торпедным отсеком имеется платформа, рассчитанная на 5 атмосфер, фактически это как горизонтальная переборка для глубины 50 метров! Как видим, обычный пожар не может из межпалубного объема переброситься ни вверх, ни вниз, а конструкция продумана так, чтобы даже при гипотетическом взрыве водорода в аккумуляторной батарее торпедный отсек не был задет.

Торпедных аппаратов всего 6 (шесть). Из них два калибром 650 мм (нижние внутренние, хотя иногда заявляют, что они наружные) и четыре калибром 533 мм (два сверху, два по краям). Автоматизированный торпедо- ракетный комплекс «Ленинград- 949» состоит из ТА, ПУТС «Гринда», торпедопогрузочного устройства (с люком в носовой переборке прочного корпуса, диаметром 800 мм), УБЗ и трехъярусных стеллажей с торпедами и ракетами. Последний момент, с учетом взрыва боезапаса на «Курске», представляет определенный интерес. Итак, по проекту в торпедном отсеке при отсутствии торпед могут быть загружены всего 28 (двадцать восемь) ракето- торпед типов 83-Р (10), ракет 84-Р (8), 10 (десять) ракето- торпед 86-Р (6) и ракет 88-Р (4). В торпедном варианте загружаются 18 УСЭТ- 80 и 10 типа 65-76А, всего 28 единиц боезапаса, из которых, естественно, шесть в торпедных аппаратах. В смешанном варианте по проекту может быть принято 16 (или 12) торпед УСЭТ-80, две (или 6) ракето- торпеды 86-Р и десять 83-Р. Прием и постановка мин не предусмотрены. ТА № 5 и 6 (650 мм) могут служить аварийно- спасательными выходами.




Торпедные аппараты и сами торпеды представляют из себя прочные конструкции- торпедами можно стрелять на глубинах до 480 метров на скоростях от 13 узлов (тип 65-76А) до 18 узлов (УСЭТ-80), причем защита от непроизвольного взрыва на торпедах за более чем 100 лет их применения доведена до совершенства: теперь на них имеются системы, не позволяющие производить самонаведение на стреляющую лодку (торпеда в этом случае самозатапливается), кроме этого, торпеды падают во время погрузок, на них спят, из них сливают спирт и т.д. и тем не менее, они не взрываются. Были случаи, когда лодки на полном ходу, ударяясь о подводные препятствия, сминали и носы, и торпедные аппараты, и находившиеся в них торпеды- и ничего, приходили в базы. С другой стороны, был случай взрыва боезапаса в Полярном, 11 января 1962 года, во время пожара в носовом отсеке дизельной подводной лодки Б-37. Лодке как раз оторвало два носовых отсека…

Устройство быстрого заряжания позволяет заменить боекомплект в торпедных аппаратах за 5 минут. Торпеда типа 65-76А (шифр «Кит») принята на вооружение в 1976 году, противокорабельная, дальноходная, на маловодной перекиси водорода (топливо- керосин), калибр 650 мм, длина- 11 м, скорость 50 узлов, дальность хода 50 км. Масса торпеды- 4650 кг, вес ВВ- 530 кг. Имеется вариант с ядерной боеголовкой (без самонаведения), но по договору в 1989 году такие торпеды сняты с вооружения. По этой же причине в арсенале отсутствуют ракеты ВА-111 «Шквал».

Торпеда УСЭТ-80 на вооружении с 1980 года, универсальная, электрическая, самонаводящаяся, калибр 533 мм, поисковая скорость- 18 уз, максимальная- 50 уз, дальность хода 15 км. Масса торпеды- 1800 кг, длина- 7,8 м, вес ВВ- 290 кг. По проекту имеет серебряно- цинковые аккумуляторы, но на «Курске» имелась опытная торпеда с более дешевой энергоустановкой. Нелишним будет отметить, что указанные торпеды имеют существенно лучшие характеристики, нежели иностранные, а у 65-76А вообще нет аналогов.

Ракето- торпеда 83-Р «Водопад» (УРПК- 6) имеет калибр 533 мм, длину 8,2 м, дальность стрельбы 50 км, в качестве головной части установлена малогабаритная торпеда УМГТ-1. 86-Р «Ветер» (УРПК-7) примерно то же самое, только калибр ее 650 мм, дальность стрельбы 110 км, глубина старта в два раза больше, а в качестве боевой части применена торпеда УСЭТ-80. Комплексы 84-Р и 88-Р представляют из себя модификацию ракето- торпед «Водопад» и «Ветер», где в качестве головной части установлена ядерная глубинная бомба. Очевидно, что ядерных боеголовок тактического оружия на «Курске» не было по причине, указанной выше.

Твердотопливные ракеты этих комплексов стартуют из-под воды, корректируются бортовой инерциальной системой, по установленным ранее от БИУС данным, в заданной точке торпеда (или глубинная бомба) отделяется, на парашюте приводняется, после чего парашют отстреливается, бомба погружается на определенную глубину (около 200 м) и там взрывается, а торпеда начинает поиск и самонаводится на цель.

Общий объем отсека- 1157 м3 . По боевой готовности №1 в отсеке по расписанию находится 5 человек- в кормовой части, по левому борту имеется служебное помещение для командира БЧ-3 (пост контроля перезарядки боезапаса), а по правому борту, через выгородку, переборочная дверь во второй отсек.

ВТОРОЙ ОТСЕК: имеет четыре палубы. На верхней- главный командный пункт с обилием пультов: «Корунд» по правому борту- пост управления рулями, пульты ГАС «Арфа», «Омнибуса», «Гринды», «Молибден» для управления общекорабельными системами, пульт ЦУ, главный воздушный пульт, посты вахтенного офицера и инженера- механика. В кормовой переборке-

люк в третий отсек, рядом- станция ЛOX, походная каюта командира. С ГКП имеется возможность вести наблюдение через два перископа- носовой (командирский ПЗКЭ- 11 «Лебедь») и кормовой (штурманский, «Сигнал-3»). Подводные лодки проекта 949А имеют на вооружении высокоточный навигационный комплекс УНК-90-949А «Симфония» (на первых лодках- «Медведица»), с приемоиндикатором КПФ-ЗК и пеленгатором КПИ-7Ф, навигационной системой привязки по гидроакустическим маякам- ответчикам СНП-3, эхолотами типа НЭЛ-2 и НЭЛ-5, космической системой АДК-ЗМ (или АДК-4М) и АВК-73, гирокомпасом ГКУ-1М, магнитным компасом КМ-145-П2, инерциальными системами «Стеллит» и «Скандий», лагами ЛКП-1 и «Самшит», замкнутыми на ЦВК «Струна». Здесь же имеется тамбур и трап, который ведет в верхний рубочный люк (вернее, во всплывающую спасательную камеру).



Через ВСК входит и выходит экипаж в обычных условиях, в аварийном случае ее вместимость 107 человек. Это, собственно, сама по себе сверхмалая прочная подводная лодка с небольшой автономностью. В ней есть НЗ, воздух, аккумуляторы, радиопередатчик, при помощи ручного привода ее можно вентилировать. Всплывающая камера своим комингсом при помощи кремальерного разъема крепится к комингсу прочного корпуса, при этом между ней и кораблем создается водонепроницаемый шлюз (предкамера). Для отделения всплывающей камеры, после размещения в ней экипажа, необходимо закрыть и задраить нижний рубочный люк и нижний люк ВСК, отдать вручную стопор, развернуть пневматикой или вручную кремальерное кольцо, заполнить водой предкамеру, при необходимости подать воздух на пневмотолкатели для окончательного отрыва ВСК от лодки. По боевому расписанию в отсеке находится 30 человек.

У кормовой переборки второго отсека имеется трап вниз, на вторую палубу, которая занята ЦВК «Струна» (из нескольких ЭВМ) и БИУС МВУ-132 «Омнибус». Там же кондиционеры, приборы микроклимата и основной люк в третий отсек.

На третьей палубе располагаются гиропост и посты комплекса «Гранит». Для удобства организации предстартовой подготовки ракет (их все- таки 24 штуки) и «разгрузки» ЦВК было решено разделить корабельную систему ПП на контуры (3 залпа- 3 контура). Такое тройное дублирование резко повысило гибкость, живучесть системы, сократило время подготовки и ввода данных, позволило таким образом производить обстрел различных целей одновременно. Даже при повреждениях, сбоях и ошибках уж один-то контур в любом случае уцелеет, а ракеты вылетят и найдут, кого нужно. Разумеется, есть и ручной канал ввода данных для крайнего случая. А вообще различных боевых контуров на лодке восемь.



На четвертой палубе, у носовой переборки, большая газоплотная выгородка для аккумуляторной батареи № 2. Обе батареи имеют емкость при 3- часовой разрядке 10500 ампер/часов, при 100- часовой 15000 а/ч. Рядом выгородка кондиционера, пост аккумуляторных ям с приборами контроля газового состава, режима вентиляции и т.д, провизионная для сухих продуктов, цистерна пресной воды. Для обеспечения экипажа пресной водой имеется четыре опреснительных установки типа ПС-2, производительностью 620 литров в час. Общий обьем отсека- 1025 м3 .

ТРЕТИЙ ОТСЕК: радиоэлектронных систем. В нем находятся все основные выдвижные устройства. Сразу за носовой переборкой- шахта антенного поста З-КР-01 для приема целеуказания от космической системы «Легенда» или от самолетного пункта наблюдения. За ним- воздушная шахта для РКП- устройства работы компрессора под

водой. Далее- радиолокационная антенна привязки «Коралл-Б», за ней- РЛС «Радиан» радиолокационного комплекса МРКП- 59, антенна УКВ связи «Анис», антенна дальней связи «Кора- Штырь», антенна радиоразведки «Зона» (пеленгатор) и в корме антенна космической связи «Синтез» (все средства связи объединены в единый комплекс «Молния»). Кроме этого, подключается телевизионная система МТК-110, которая позволяет в определенных условиях видеть под водой на глубинах 50-60 метров. Естественно, что в трюме находятся цистерны и насосы гидравлики, которые поднимают и опускают все эти выдвижные устройства. Жидкость, применяемая в системе гидравлики, совершенно негорюча. Маленький нюанс- подъем выдвижных устройств происходит по команде с ЦП, а вот при контролируемой ситуации они опускаются автоматически, на глубине 50 метров.





Итак, диаметральная линия всех палуб третьего отсека напоминает лес: ее занимают собой стальные стволы выдвижных устройств. Кроме этого, на 1 палубе по левому борту расположены рубки радиосвязи, по правому- запасной командный пункт, который для оперативности имеет люк в ЦП второго отсека. Далее идет рубка гидроакустиков и рубка радиоразведки, у кормовой переборки по левому борту рубка радиометриста. На второй палубе с правого борта пост вахтенного отсека, за ним каюта командира, далее люк в 4 отсек, с левого борта пост «Коралла» с кондиционером, у кормовой переборки третьего отсека- пост химслужбы и станция ЛОХ. По боевой тревоге в отсеке находится 24 человека.

По трапу вниз можно попасть на третью палубу, где по левому борту расположены посты связи, в том числе и засекречивающей, у кормовой переборки отсека устроен гальюн и умывальник, а на свободных площадях- каюты (командира БЧ-5, одна каюта офицеров и три мичманских). На четвертой палубе, как уже говорилось, системы гидравлики, в том числе и автономная, со своими цистернами и приводами, для открывания наружных щитов и крышек ракетных контейнеров. Рулевая гидросистема тоже автономна. Трюм занят водоотливными и осушительными магистралями, системой охлаждения, там же стоит главный осушительный насос ЦН-279 (имеется также четыре водоотливных насоса типа ЦН-294 и два типа ЭНА-4). Общий объем отсека- 956 м3 .




ЧЕТВЕРТЫЙ ОТСЕК: жилой, в него можно попасть как из третьего отсека (по второй палубе), так и через входной люк, который выходит наверх, в кормовую часть рубки (или, правильнее, ограждения выдвижных устройств). На первой палубе по левому борту от носа к корме идут каюта интенданта и коков, затем гальюн с умывальником, медицинский изолятор, амбулатория, каюты матросов и мичманов. По правому борту- трап вниз, секретная часть и далее пять кают мичманов и матросов. По штату всего офицеров на лодке- 43, мичманов- 37, старшин- 5 и рядовых- 21, то есть 106 человек. Автономность- 120 суток. Максимальное время пребывания под водой (с работающей АЭУ, но только с регенерацией воздуха, без вентиляции) 2880 часов.

На второй палубе четвертого отсека справа от входного люка располагаются трапы наверх и вниз, затем идет большая и комфортная кают- компания офицеров с буфетной и мойкой, за ней по коридору два блока офицерских кают, у кормовой переборки пост вахтенного отсека и станция ЛОХ. Основу химической системы объемного пожаротушения в затесненных отсеках составляет фреон-114В- 2 (или хладон). Хладоны при тушении приостанавливают горение, снижая активность кислорода, а то и вовсе связывая его. Хладоны в чистом виде инертны, не проводят электричество, обладают повышенной способностью к тушению, но токсичны, особенно после сгорания. Жидкость находится в резервуаре, в случае пожара и принятия решения на применение ЛОХ из центрального поста подается сжатым воздухом по трубопроводам через сопла- распылители. В случае своевременной подачи тушение пожара гарантировано. Вторая система, ВПЛ, тушит открытый огонь воздушно- пенной смесью, но ею нельзя ликвидировать возгорание регенерации или двух- компонентного торпедного топлива. Всего на лодке 10 станций ЛОХ и 2 ВПЛ.




Вдоль стен прочного корпуса- приборы и установки для поддержания микроклимата в ракетных шахтах, где хранятся ракеты «Гранит».

Третья палуба 4 отсека состоит из двух отделений: носовое занимают офицерские каюты с небольшой душевой личного состава, столовая мичманов и матросов, а также помещение телецентра с видеомагнитофоном, аудиоцентром и пультом трансляции на каюты. Через легкий тамбур имеется проход в кормовое отделение отсека- зону отдыха. Такие зоны имеются лишь на двух проектах- 941 и 949 (на других лодках в усеченном варианте), именно благодаря им стало возможным более чем 80- суточное подводное плавание. Во-первых, здесь имеется спортзал с тренажерами, шведской стенкой, велоэргометром, фотарием, напротив спортзала- парилка, душ и бассейн (обычно для него морская вода берется с глубины не менее 250 метров), довольно вместительный, который «выпирает» на нижнюю палубу. Во-вторых, имеется большой экран с заменяемыми слайдами, где изображена природа и различные сюжеты со звуковым оформлением, на специальных полках- растения, которые возделываются на гидропонике, клетки с канарейками и аквариумы, игровой автомат, телевизор, может имитироваться дуновение ветерка.

На четвертой палубе не так весело, но тоже всякого хватает: через трюм сквозь прочный корпус проходят устройства для выброса мусора за борт (ДУК), рядом камбуз, около него двухуровневая охлаждаемая провизионная цистерна, а остальное свободное пространство заставлено аппаратами поглощения углекислого газа УРМ, которые можно встретить, хотя и не в таких количествах, в других отсеках (всего таких патронов на лодке 200-210 штук, при определенных условиях они горят и взрываются). Системы регенерации и очистки воздуха также дублированы («Сорбент», «Джут», «Кизил» и другие), приборов газового контроля с системами сигнализации семь наименований, так что взрыв кислорода или водорода практически исключен. В трюме- различные системы, помпы, магистрали, трубопроводы. По боевой тревоге в отсеке находится 8 человек. Общий объем отсека- 1487 м3 .




ПЯТЫЙ ОТСЕК: вспомогательных механизмов. На первой палубе расположен компрессор системы высокого давления АЭКС-7,5 и вентиляторы носового кольца, а также выхлопная магистраль (газоотвод) дизель- генератора. На второй палубе, в выгородке- дизель- генератор АСДГ-800/1 на 800 кВт и распределительные щиты. Общий запас дизельного топлива- 43 тонны, дизельного масла- 4,5 тонны. Здесь же по правому борту располагается проход и межотсечные люки. На третьей палубе установлен щит берегового питания (переменного 380 В, 50 Гц, 1500 кВт, 220 В, 400 Гц, 50 кВт и постоянного 175-320 В). В специальном помещении, с отдельным выходом в 4 отсек, располагается пост управления ГЭУ, с пультами электроэнергетических систем «Онега» и ГЭУ «Ураган». На четвертой палубе и в трюме находится, помимо насосов осушения и компрессоров, электролизная установка К-4 для получения кислорода. На лодках первого поколения такой установки еще не было, применялись регенеративные патроны, которые при соединении с грязью и особенно с машинным маслом загорались и служили источниками большинства пожаров.




Электролизная установка расщепляет воду на кислород и водород. Второй удаляется за борт специальным компрессором, а первый в объеме около 250 литров в час подается в отсеки. Процентное содержание в воздухе внутри лодки должно быть 19-21%, причем до пожара на «Комсомольце» допускалось 23%, то есть на 2% выше, чем в земной атмосфере. На нижних пределах экипаж будет себя плохо чувствовать, если содержание выше- повышается опасность пожара. В случае, если кислород и водород ка- ким-то образом соединятся в воздухе, образуется взрывчатая гремучая смесь. Такие взрывы бывали, хотя катастрофических разрушений они не вызывают. По боевому расписанию в отсеке находится 11 человек. Общий объем отсека- 616 м3 .

ПЯТЫЙ-БИС ОТСЕК: также вспомогательных механизмов, много оборудования в них дублируется. На верхней палубе- распредщиты, резервный пост связи (без собственных антенн), на второй- электролизная установка К-4, дизель- генератор АСДГ-800/2 в выгородке, компрессоры, щит ДГ, выпрямитель сети электросварки постоянного тока, станция JIOX, УРМ, в кормовой части тамбур- шлюз с душевой. Такие тамбур- шлюзы устроены для выхода через них из отсека с возникшей радиоактивностью. Здесь в этом случае организуется дезактивация личного состава, причем вода подается со всех сторон.



На третьей палубе- обратимый преобразователь и небольшая курительная комната. На четвертой- насосы общесудовой системы гидравлики с коммуникациями и трубопроводами, а также цистерны. По боевой тревоге в отсеке находится 4 человека. Общий объем отсека- 628 м3 .

ШЕСТОЙ ОТСЕК: реакторный. Имеет два коридора- правого и левого борта, в них стоят стойки системы СУЗ, отсечные вентиляторы и кондиционеры. Правый коридор имеет с носа и кормы межотсечные люки, а также окна для осмотра аппаратных выгородок. Из обоих коридоров по трапам можно спуститься в насосные, которые занимают объем вдоль всего коридора, между ними расположены аппаратные выгородки, над которыми, в свою очередь, компрессорные. Коридоры правого и левого борта сообщаются переходным коридором, проходящим поперек отсека, под возвышенным настилом которого находятся вентиляторы среднего кольца вентиляции. С их помощью можно очищать загрязненный воздух в реакторном отсеке.

Имеется два тамбур- шлюза (с опечатанными входами) для обслуживания реакторов, в компрессорных стоят продублированные насосы вакуумирования, насосы подпитки, аппаратура проб пара.

Ядерные реакторы типа ОК-650М.01, на последних лодках ОК-650.02 (носовой- правого борта, кормовой- левого борта) представляют из себя не только самую ответственную часть оснащения корабля, но и одну из самых надежнейших, с ресурсом работы основного оборудования до 50000 часов. Общий запас ядерного топлива- 115 кг, что при 36% обогащении урана-235 составляет колоссальный энергозапас в 1140000 мВт, кампания активных зон реактора 60000 часов. Как известно, для безаварийной остановки процесса необходимо заглушить активную зону поглотителями нейтронов и обеспечить охлаждение внутренней полости реактора и тепловыделяющих элементов. Еще при разработке систем защиты реактора ставилось непременное условие, чтобы приводы аварийной защиты и компенсирующих решеток (поглотителей) обеспечивали их опускание «самоходом» с определенной скоростью, даже при обесточивании электродвигателей. Из приводов были исключены самотормозящиеся звенья, а решетка была подпружинена. При такой системе после отключения электроэнергии реактор автоматически заглушается даже при опрокидывании корабля.

Для исключения дальнейшего перегрева реактора, в случае аварийного обесточи- вания насосов, необходимо было обеспечить естественную циркуляцию воды первого контура, с постепенным ее остыванием, для съема остаточного тепла с ТВЭЛов безбатарейным расхолаживанием. Уменьшение количества корпусов парогенераторов с четырех до двух, а также применение прямотрубных элементов вместо змеевиков в сочетании с системой прокладки трубопроводов решило эту проблему. Подблочное пространство можно осматривать при помощи специальной телевизионной системы.

В общем, никому ничего «глушить» не требуется. По боевому расписанию в отсеке находится 5 человек. Общий объем отсека- 641 м3 .

СЕДЬМОЙ ОТСЕК: турбинный, в него входят через реакторный отсек, попадают в нишу, затем по трапу поднимаются на первую палубу, которая представляет из себя газоплотный настил, через который можно спуститься к турбинам через тамбур- шлюз. Вдоль прохода установлены пульт аварийного управления ГЭУ (по левому борту у кормовой переборки), главный распредщит с ГРЩ неотключаемой нагрузки, станция ЛOX. Впервые на этих лодках в состав электроэнергетической системы были включены статические выпрямители, которые позволяли останавливать обратимые преобразователи в основных эксплуатационных режимах работы главной энергоустановки. При этом был предусмотрен дежурный режим, обеспечивающий готовность обратимых преобразователей к автоматическому пуску и приему нагрузки после потери питания от главных турбогенераторов. Эта «находка» помогла продлить ресурс многих устройств а главное- снизить количество одновременно шумящих механизмов.




Остальной объем ниже газоплотного настила (рассчитанного на давление 0,1 атм) занимает ГТЗА «Сапфир» типа ОК- 9ДМ правого борта, мощностью 50000 л.с, а также пароэжекторная холодильная машина и испаритель. В этом же отсеке располагается электростанция мощностью 3200 кВт от турбогенератора. Начиная от кормы, агрегат включает в себя разобщительную муфту, редуктор, турбину переднего хода, турбину заднего хода, муфту вспомогательного электродвигателя и сам электродвигатель ПГ-160 на 475 л.с. Под дизель- генераторами и ГЭД лодка может идти со скоростью 5 узлов 500 миль. Под турбинами на полной мощности скорость надводная составляет 15,4 узлов (закрити- ческая), подводная- 33,5 узла. С выдвинутыми антеннами и устройствами лодка не должна развивать ход более 9 узлов, иначе можно просто все их согнуть. Кроме этого, на перископной глубине вокруг винтов может начаться кавитация, поэтому число оборотов ограничено 60. На глубине 100 метров можно по этим же причинам развить не более 21 узла при 127 оборотах.

По боевой тревоге в отсеке находится 9 человек. Общий объем отсека- 1116 м3 .

ВОСЬМОЙ ОТСЕК: турбинный, зеркально идентичен седьмому (по тревоге обслуживают 7 человек). Турбины и другие ответственные механизмы имеют системы амортизации и изоляции для снижения шума, для экономии массы широко применены титановые сплавы, БПТУ рассчитаны на ударные нагрузки, соответствующие параметрам подводного ядерного взрыва. Величина безопасного радиуса для проекта 949А при атомном подводном взрыве мощностью в 10 кТ по ударной волне составляет 1100 м (для прочного корпуса и основных устройств) и 1300 м (для главной энергоустановки). Радиус разрушения принят как 80% от величины безопасного радиуса.

Гребные валы диаметром 950 мм имеют сложную систему защиты от заклинивания на больших глубинах (при обжатии), бака- утовые дейдвудные втулки, входят в прочный корпус через мортиры и передают все свое колоссальное усилие при полном ходу на упорные подшипники. Даже при очень сильном встречном ударе вряд ли валы могут без полного разрушения переборки сдвинуть подшипники Митчеля (а переборки эти остались относительно целыми). Общий объем отсека- 1072 м3 .

ДЕВЯТЫЙ ОТСЕК: вспомогательных механизмов, самый малый по объему (542 м 3), имеет всего две палубы. Первую занимают насосы и емкости гидравлики рулевой системы, компрессор воздуха высокого давления, кормовая станция ВПЛ. С правого борта здесь же водоумягчительная лаборатория. В носовой части отсека по ДП имеется трап для подъема в аварийно- спасательный люк. В кормовой части- боевой пост резервного управления рулями с местного поста при отказе системы управления из ЦП «Корунд». В объеме между первой и второй палубами проходят, с небольшим развалом, две линии гребных валов, между ними стоит компрессор ВВД типа ЭКСА-25 (сверху АЭКС-7,5). Имеется токарный станок. На левом борту- гальюн и небольшая душевая, в трюме имеется провизионная цистерна и гидроцилиндры рулевых машин для привода вертикальных рулей (их всего три), а также небольшие цистерны. По боевой тревоге в отсеке должны находиться 3 человека. Из спасательных устройств на лодке размещены 6 надувных плотов (каждый на 20 чел), 120 противогазов и комплектов ССП, 53 изолирующих противогаза ИП-6 (в них можно находиться под водой) и другие, типа РМ-2, КЗМ, бахилы, перчатки и т.п. Во всех отсеках в специальных опечатанных баках хранится шестисуточный неприкосновенный запас продуктов.

МЕЖКОРПУСНОЕ ПРОСТРАНСТВО. Здесь в основном расположены баллоны воздуха высокого давления ВВД-400, что позволяет лодке всплывать при помощи продувки балластных цистерн с глубины менее 399 метров (глубже воздух просто не сможет выдавить воду), общий запас воздуха 128 кубометров. Всего балластных цистерн 25, время срочного погружения из перископного положения 2 минуты 15 секунд. При проектировании принята бескингстонная система, как более простая, наружные шпигаты в подводном положении закрыва ются крышками для уменьшения шума и улучшения обтекаемости. Для аварийного всплытия с больших глубин применяется система с пороховыми генераторами, установленными в нескольких цистернах. Все наружные конструкции имеют ледовые подкрепления.

В прочном корпусе имеется 1400 различных отверстий, для выхода водяных и воздушных магистралей, кабелей ввода, над реакторным отсеком имеется погрузочный люк диаметром 1 метр, чуть меньше люки для перегрузки аккумуляторных батарей.

В носовой части легкого корпуса значительный объем выделен под гидроакустическую антенну ГАК «Скат-3» МГК-540. Комплекс предназначен для непрерывного освещения подводной обстановки и фиксирования надводных целей и состоит из большого количества устройств и станций: определитель разводий НОР-1, станция миноискания МГ-519 «Арфа», станция- аварийный ответчик на запрос поисково- спасательного судна МГС-30, навигационный обнаружитель круговой НОК-1, МГ-512 («Винт»), МГ-518 (эхоледомер «Север»), МГ-543. Все эти средства позволяют в автоматизированном режиме обнаруживать, пеленговать и сопровождать всевозможные цели (до 30 одновременно) в режимах широко- и узкополосного пеленгования в высокочастотном, звуковом и инфразвуковом диапазонах. Имеется буксируемая низкочастотная приемная антенна, выпускаемая из верхней трубы на кормовом стабилизаторе (устанавливается со второго корпуса), а также приемники, расположенные по бортам легкого корпуса. Дальность действия ГАК- до 220 км. Основной режим- пассивный, но имеется возможность автоматизированного обнаружения, измерения дистанции, курсового угла и расстояния до цели в активном режиме (эхо- сигналом). Вдоль легкого корпуса проложено размагничивающее устройство.






В массивной рубке (ограждении) длиной 29 метров находятся, как уже говорилось, шахты выдвижных устройств, всплывающая спасательная камера, а также два выхода, в кормовой части ограждения расположены два устройства ВИПС- своеобразные небольшие торпедные аппараты для выстреливания приборов гидроакустического противодействия. С 12 корпуса начинается установка прочного контейнера с зенитными ракетами типа «Игла» для самообороны от противолодочной авиации и другие улучшения. На флоте такие лодки называют 949AM. Легкий корпус и особенно рубка имеют ледовые подкрепления для проламывания полыньи в случае всплытия.

За рубкой находятся под крышками две всплывающие антенны- «Залом» (на первых двух корпусах- «Параван») для приема и передачи радиосигналов и «Ласточка» (на первых «Зубатка»), предназначенная для приема сверхнизкочастотных сигналов под водой и даже подо льдами, на глубинах до 120 метров. Ближе к корме- аварийный буй В- 600, который отдается из центрального поста. При этом система «Парис» успевает ввести в передатчик координаты места отдачи буя, который после всплытия в свободном плавании сообщает в эфир эти координаты. Раньше, когда глубины погружения лодок были небольшими, все было попроще: буй отдавался на тросе с кабелем, мигала лампа, работал радиомаяк, в сухом отделении буя находился телефон, через который можно было вести переговоры с отсеками. От этого пришлось отказаться- какого объема и веса нужен буй, чтобы он, всплывая, поднимал на себе 600 метров троса и кабеля!

Перед самым кормовым стабилизатором, над аварийным люком, находится посадочное кольцо для стыковки с автономными аппаратами, которые имеются в ПСС ВМФ.

В носовой части имеется якорное устройство с якорем АС-17 (глубина постановки в надводном положении до 60 метров), буксирное устройство (АБУ), под палубой надстройки установлены выдвижные швартовные устройства, шпили, кнехты, киповые планки, вьюшки. Имеются «эпроновские» лючки с буквой «Э.», под которыми находятся вентили, соединяющиеся с лодочной магистралью воздуха среднего давления, что позволяет на небольших глубинах продуть балластные цистерны или подать воздух в отсеки, а также доступ к специальным подъемным штокам (устройство ШУ-400), рассчитанным на усилие в 400 тонн. Вдоль всей палубы протянут жесткий леер, к которому специальными карабинами пристегиваются при палубных работах в море.






Про винты, а в принципе, про всю кормовую оконечность, следует сказать особо: еще в процессе проектирования пришлось искать оптимальные обводы кормы, в результате выбрали раздвоенную. Хотя по расчетам, скорость при этом снижалась на 0,3 узла, зато обеспечивалась равномерность набегающего потока к винтам, что на 20 % снижало шумность. Мало того, по большому счету, у каждой лодки своя корма. Применялись вначале малошумные пятилопастные винты с умеренной саблевидностью, на 606 заказе были установлены соосные четырехлопастные, типа «тандем», затем экспериментировали со спрямляющими водяной поток устройствами, в итоге остановились на семилопастных винтах с саблевидными лопастями диметром 4,8 м. Долго искали и оптимальную «малошумную» форму водозаборников для охлаждающих устройств в турбинных отсеках и даже сдвигали их. В итоге принятыми мерами было достигнуто снижение шумности на 15 децибел.

Большую роль в снижении физических полей играют противорадио- и гидролокационные (в том числе нерезонансные) покрытия корпуса типов «Плавник» и «Панцырь».

Самый большой объем в межкорпусном пространстве занимают шахты и пусковые устройства СМ-225 для ракет «Гранит». Всего их 24, по 12 на одном борту, по штату четыре ракеты должны быть с ядерными боеголовками. Расположены шахты в ряд, одна за одной, под углом в 40 градусов. Старт производится с глубины до 50 метров, на скорости до 5 узлов. Вначале открываются (в сторону ДП) внешние щиты- обтекатели, затем в шахтах, где ракеты назначены для залпа, водой выравнивается давление, открываются крышки и с интервалом в 5 секунд «Граниты» стартуют из- под воды. Как известно, размещение установок крылатых ракет вне прочного корпуса увеличило безопасность лодки в целом в каждой боеголовке по 900 кг ВВ, и, если бы произошла детонация такого количества взрывчатки, от лодки просто ничего бы не осталось.

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого, или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка ещё может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы лёгкого корпуса обеспечивают оптимальное обтекание на расчётном ходу. В подводном положении внутри лёгкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС, тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные : цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Лёгкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса. Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность. Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными. Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные (ЦГБ внутри лёгкого корпуса, лёгкий корпус полностью закрывает прочный): у двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри. Достоинства: повышенный запас плавучести, более живучая конструкция. Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии. По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные : (ЦГБ внутри лёгкого корпуса, лёгкий корпус частично закрывает прочный). Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести. Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус. Такой конструкцией отличались средние ПЛ времен Второй мировой войны, например, немецкие типа VII , и первые послевоенные, например, тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объём над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапаны вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через неё же обычно пропущены шахты перископов. Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией, опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Реже - ограждение выдвижных устройств. Устанавливается вокруг прочной рубки, чтобы улучшить обтекание её и выдвижных устройств. Оно же формирует ходовой мостик. Выполняется лёгким.

2 ноября 1996 года в городе Северодвинске в торжественной обстановке была заложена первая (как в нашей стране, так и в мире) атомная стратегическая подводная лодка, относящаяся к 4-му поколению. Новый подводный ракетоносец стратегического назначения был назван «Юрий Долгорукий». Исследования в области ракетных подводных лодок, относящейся к новому 4-му поколению, начались еще в СССР в 1978 году.

Непосредственной разработкой АПЛ проекта 955 (шифр) занималось ЦКБ «Рубин», главным конструктором по проекту был В.Н.Здорнов. К активным работам приступили в конце 1980-х годов. К этому моменту изменилась и общемировая обстановка, что наложило определенный отпечаток на облик новой подлодки. В частности было решено отказаться от экзотической компоновки и гигантских размеров, которыми обладали ПЛА «Акула», вернувшись к «классической» схеме.

Согласно первоначальным планам новый подводный ракетоносец планировали вооружить ракетным комплексом, созданным «макеевской» фирмой. Основным вооружением должны были стать мощные твердотопливные ракеты «Барк», оснащенные новой системой инерциально-спутникового наведения на цель, что позволило бы значительно улучшить точность стрельбы. Но серия неудачных испытательных пусков ракеты и скудное финансирование заставили конструкторов пересмотреть состав ракетного вооружения ракетоносца.

В 1998 году в Московском институте теплотехники (МИТ), который до этого специализировался на проектировании стратегических баллистических твердотопливных ракет наземного базирования (среди которых ракеты «Курьер», «Пионер», «Тополь» и), а также противолодочных ракетных систем (знаменитая «Медведка») была начата работа по созданию абсолютно новой ракетной системы, которая известна как. Данный комплекс по точности поражения целей и способности преодоления ПРО противника должен превзойти американский аналог – «Трайдент» II.

Новая морская ракета достаточно сильно унифицирована с состоящей на вооружении РВСН межконтинентальной баллистической ракетой «Тополь-М», не являясь при этом ее прямой модификацией. Существенные различия в особенностях наземного и морского базирования не позволяют разработать универсальную ракету, которая бы в одинаковой степени удовлетворяла требованиям РВСН и ВМФ.

Новая ракета морского базирования по разным данным способна нести от 6 до 10 ядерных блоков индивидуального наведения, которые обладают возможностью маневра по тангажу и рысканию. Общий забрасываемый вес ракеты составляет 1150 кг. Максимальная дальность пуска составляет 8000 км, что достаточно для поражения практически всех точек на территории США за исключением юга Калифорнии и Флориды. В то же время во время проведения последнего испытательного запуска ракета преодолела 9100 км.

Согласно существующим планам по модернизации подводного флота России, РПКСН проекта 955 «Борей» должны стать одним из 4-х типов подводных лодок, которые будут приняты на вооружение. В свое время одной из особенностей советского, а затем и российского флота было использование десятков разнообразных модификаций и типов подводных лодок, что существенно осложняло их ремонт и эксплуатацию.

В настоящее время между Минобороны РФ и ОСК – Объединенной Судостроительной Корпорацией подписан контракт на разработку модифицированной версии РПКСН пр. 955А «Борей». Сумма контракта на разработку лодок составила 39 млрд. рублей. Строительство подводных лодок проекта 955А будет осуществляться в Северодвинске на ПО «Севмаш». Подводные лодки нового проекта будут иметь по 20 БРПЛ «Булава» и усовершенствованный комплекс вычислительных средств.

История создания и конструктивные особенности

Начиная с конца 80-х годов, подводная лодка проекта 955 проектировалась как двухвальный РПКСН, аналогичный по своей конструкции подводным лодкам серии 667 БДРМ «Дельфин» с уменьшенной высотой шахт баллистических ракет под ракетный комплекс «Барк». По данному проекту и была заложена в 1996 году субмарина с заводским номером 201. В 1998 году было принято решение об отказе от БРПЛ «Барк» в пользу создания новой твердотопливной ракеты «Булава», обладающей другими габаритами.

Такое решение привело к перепроектированию подводной лодки. Одновременно с этим стало понятно, что субмарина не сможет быть построена и введена в строй в разумные сроки в условиях сокращения объемов финансирования и распада СССР. Развал СССР привел к прекращению поставок специфических марок металлопроката производства Запорожского Сталелитейного Завода, оказавшегося на территории независимой Украины. При этом при создании лодок было принято решение об использовании заделов по недостроенным подводным лодкам проектов 949А «Антей» и 971 «Щука-Б».

Движение подводной лодки осуществляется при помощи одновальной водометной движительной установки, обладающей пропульсивными качествами. Аналогично подводным ракетоносцам проекта 971 «Щука-Б», новая подводная лодка имеет выдвижные носовые горизонтальные рули с закрылками, а также два откидывающиеся подруливающие устройства, которые повышали ее маневренность.

Подводные лодки проекта «Борей» оснащаются системой спасения – всплывающей спасательной камерой, которая может вместить весь экипаж субмарины. Спасательная камера находится в корпусе лодки позади от пусковых установок БРПЛ. Помимо этого на подводном ракетоносце имеется 5 спасательных плотов класса КСУ-600Н-4.


Корпус подводной лодки проекта 955 «Борей» имеет двухкорпусную конструкцию . Вероятнее всего, прочный корпус лодки выполнен из стали толщиной до 48 мм и показателями предела текучести 100 кгс/кв.мм. Сборка корпуса субмарины производится блочным методом. Оборудование подводной лодки монтируется внутри ее корпуса в амортизационных блоках на специальных амортизаторах, которые являются частью общеконструкционной системы двухкаскадной системы амортизации. Каждый из амортизационных блоков изолирован от корпуса субмарины при помощи резинокордных пневматических амортизаторов. Носовая оконечность ограждения рубки ПЛА изготовлена с наклоном вперед, это сделано с целью улучшения обтекания.

Корпус подводной лодки покрыт специальным резиновым противогидроакустическим покрытием , также в ее конструкции, вероятно, применяются активные средства снижения шума. Согласно словам А.А.Дьячкова, гендиректора ЦКБ «Рубин», подводные лодки проекта 955 «Борей» обладают в 5 раз меньшей шумностью, чем ПЛА проектов 949А «Антей» или 971 «Щука-Б» .

Гидроакустическое вооружение подводной лодки представлено МГК-600Б «Иртыш-Амфора-Борей» – единым автоматизированным цифровым ГАК, который объединяет в себе как сам ГАК в чистом его понимании (эхопеленгование, шумопеленгование, классификация целей, ГА-связь, обнаружение ГА-сигналов), так и все гидроакустические станции так называемой «малой акустики» (измерение скорости звука, измерение толщины льда, миноискание, обнаружение торпед, поиск полыней и разводий). Предполагается, что дальность действия данного комплекса превзойдет ГАК американских подводных лодок типа «Вирджиния».


На подводной лодке установлена ядерная энергетическая установка (ЯЭУ), вероятнее всего, с водо-водяным реактором на тепловых нейтронах ВМ-5 или же аналогичная с мощностью порядка 190 МВт. На реакторе используется система управления и защиты ППУ – «Алиот». По неподтвержденной пока что информации на лодках данного проекта будет установлена ЯЭУ нового поколения. Для движения субмарины задействуется одновальная паровая блочная паротурбинная установка с главным турбозубчатым агрегатом ОК-9ВМ или аналогичным ему с улучшенной амортизацией и мощностью приблизительно 50.000 л.с.

Для улучшения маневренности подводная лодка проекта 955 «Борей» оснащается 2-мя подруливающими двухскоростными гребными электродвигателями ПГ-160, каждый мощностью по 410 л.с. (по другим данным мощностью в 370 л.с.). Данные электродвигатели находятся в выдвигаемых колонках в кормовой части субмарины.

Основным вооружением лодки являются твердотопливные баллистические ракеты Р-30 «Булава» , созданные Московским Институтом Теплотехники. Корабельный боевой стартовый комплекс (КБСК) был создан в ГРЦ им. Макеева (город Миасс). На первых лодках проекта 955 «Борей» будет находиться по 16 БРПЛ «Булава», на лодках проекта 955А их количество будет доведено до 20 единиц.


Помимо ракет лодка имеет 8 носовых 533-мм торпедных аппаратов (максимальный боезапас 40 торпед, ракето-торпед или самотранспортирующихся мин). С борта лодки могут применяться торпеды УСЭТ-80 и, ракеты ПЛРК «Водопад». Также имеется 6 одноразовых неперезаряжаемых 533-мм пусковых установки РЭПС-324 «Шлагбаум» для запуска средств гидроакустического противодействия, которые расположены в надстройке (аналогично лодкам проекта 971). Боекомплект - 6 самоходных приборов гидроакустического противодействия: МГ-104 «Бросок» или МГ-114 «Берилл».

По состоянию на май 2011 года было известно, что, начиная с 4-го корпуса подлодок проекта 955 «Борей» (условно пр. 09554), будет изменяться форма корпуса лодки, которая станет ближе к изначально задуманному облику субмарин. Вероятно, данные лодки будут строиться без использования задела, который остался от ПЛА пр. 971. В носовых отсеках РПКСН планируется отказаться от двухкорпусности.

Наряду с носовыми антеннами ГАК «Иртыш-Амфора» будут использоваться протяжные корпусные антенны ГАК. Торпедные аппараты планируется сдвинуть ближе к центру корпуса и сделать их бортовыми. Передние рули глубины собираются переместить на рубку. Количество пусковых шахт планируется довести до 20, с уменьшением размеров проницаемой надстройки в районе шахт. Подвергнется модернизации и энергетическая установка, которая будет унифицирована с другими подлодками 4-го поколения.

Основные ТТХ лодки :
Экипаж – 107 человек (в том числе 55 офицеров);
Длина наибольшая – 170 м;
Ширина наибольшая – 13,5 м;
Осадка корпуса средняя – 10 м;
Водоизмещение подводное – 24.000 т;
Водоизмещение надводное – 14.720 т;
Скорость подводного хода – 29 узлов;
Скорость надводного хода – 15 узлов;
Глубина погружения предельная – 480 м;
Глубина погружения рабочая – 400 м;
Автономность плавания – 90 суток;
Вооружение – 16 ПУ ракет Р-30 «Булава», на лодках проекта 955А – 20ПУ, 8х533 торпедных аппаратов.

/По материалам militaryrussia.ru и vadimvswar.narod.ru /

Наружный вид подводной лодки (ПЛ) дает представление о её размерах и обводах, двухкорпусной конструкции, наборе выдвижных устройств, рулевых и спасательных устройствах. Через носовой входной люк можно увидеть, что обтекаемый, сложной конфигурации легкий корпус, является наружной оболочкой цилиндрического прочного корпуса. Между корпусами размещены резервуары сжатого воздуха, различные трубопроводы.



В носовой части лодки, в выступающем бульбе, размещается антенна гидроакустической станции (ГАС) «Тулома». Здесь же, над легким корпусом, возвышается обтекатель антенны ГАС МГ-15. ГАС является единственным средством ориентации, связи, обнаружения целей и наведения оружия ПЛ, находящейся в подводном положении.

Посередине корпуса ПЛ установлено ограждение рубки. Будучи обтекаемым продолжением легкого корпуса вверх, оно ограждает цилиндрическую боевую рубку. Здесь же размещаются приборы и механизмы управления лодкой в надводном положении.

Из ограждения рубки выступают выдвижные устройства:

1-перископ атаки, 2-зенитный перископ, 3-устройство РДП (работа дизеля под водой), 4-ПМУ АП СОРС «Накат», 5-ПМУ АП радиопеленгатора «Завеса», 6-ПМУ АП РАС «Флаг», 7-ПМУ ВАН, 8-газовыхлоп, 9-ПМУ «Ива-МВ»

В корме находится отполированное кольцо комингс-площадки с входным люком. Эта площадка предназначена для посадки на нее подводных спасательных аппаратов в случае, если ПЛ потерпела аварию и потеряла возможность всплыть.



Спустившись через носовой люк внутрь лодки, мы попадем в первый отсек. Здесь развернута экспозиция «Из истории подводного флота России» , отражающая в моделях, фотографиях, текстах основные вехи этой истории. Экспозиция и внутренние элементы подводной лодки составляют единое целое. Здесь же размещены в два ряда шесть труб 533-миллиметровых носовых торпедных аппаратов, прибор управления торпедной стрельбой, стеллажи с запасными торпедами: всего, с учетом запасных, лодка несла 22 торпеды.


Во втором отсеке расположены: каюты командира и офицеров, кают-компания, рубка гидроакустика, где установлены центральные приборы ГАС «Тулома», гидролокационной станции (ГЛС) «Арктика-М», рубка радиоразведчика.


Третий отсек – это центральный пост. Отсек до предела насыщен приборами и устройствами, с помощью которых ведется управление движением лодки, погружением и всплытием, оружием. Сюда выходят окуляры перископов, здесь стоят индикаторы радиолокационных станций (РЛС) «Флаг», «Накат», штурманское оборудование: гирокомпас «Курс-5», лаг «ЛР-2», эхолот НЭЛ-5, эхоледомер ЭЛ-1, радиопеленгатор АРП-53.


В четвертом отсеке расположены кают-компания старшин, камбуз, рубка радиосвязи, где установлены радиоприемники и радипередатчики УКВ, КВ и ДВ диапазонов, аппаратура сверхбыстродействующей связи «Акула-2ДП».


В пятом отсеке находятся три дизеля 2Д42 мощностью по 1900 л.с. каждый, работающие при движении ПЛ в надводном положении и обеспечивающие скорость до 16 узлов.


В следующем отсеке установлены три электродвигателя подводного хода: два - ПГ-101, мощностью по 1350 л.с. и один - ПГ-102, мощностью 2700 л.с., а также электродвигатель экономического хода ПГ-104 мощностью 140 л.с.


Последний, седьмой, – это кормовой торпедный отсек. Здесь установлены четыре 533-мм торпедных аппарата, прибор управления торпедной стрельбой, койки личного состава. Здесь же развернута экспозиция, посвященная трагическим страницам истории отечественного флота – гибели атомных подводных лодок «Комсомолец» и «Курск». Флагшток с «Комсомольца», фотографии, сделанные подводными аппаратами на месте гибели лодки, фрагменты легкого и прочного корпусов «Курска» напоминают нам о трагических днях.

В 1963 году была принята на вооружение придонная якорная реактивная всплывающая мина РМ-2. Она была создана в НИИ «Гидроприбор». Диаметр мины 533 мм, длина 3,9 м, вес 900 кг, вес взрывчатого вещества 200 кг. Глубина постановки мины 4–300 м. Взрыватель активный акустический. Мина ставилась из торпедных аппаратов подводных лодок.

В процессе проведения испытаний мин РМ-2 и ПМ-2 отрабатывались глубоководные режимы стрельбы из торпедных аппаратов подводных лодок с использованием систем стрельбы ГС-45, ГС-80 и ГС-100.


1-корпус мины, 2-запальное устройство, 3-заряд ВВ, 4-реактивный двигатель, 5-якорь.

Мины РМ-2 и РМ-2Г имели прямолинейную траекторию движения их боевой части (ракеты) к цели. Такие мины вместе с размещенными в них зарядами взрывчатого вещества после отработки неконтактного гидролокационного отделителя, определяющего глубину нахождения цели, стартовали к ней с помощью собственного реактивного двигателя. Взрыв мин производился в непосредственной близости от цели с помощью контактного или гидростатического взрывателя. Эти мины высоконадежны и эффективны. Время атаки - считанные секунды. Попытки производить эти мины другими странами не увенчались успехом.


В 1965 году поступила на вооружение подлодочная якорная реактивно-всплывающая мина РМ-2Г с неконтактной глубоководной аппаратурой. Она заменила ранее принятую на вооружение мину РМ-2.

Противокорабельная торпеда. Вариант торпеды 53-65 с кислородным тепловым двигателем с использованием серийных компонентов и решений от торпед 53-56, 53-57, 53-58, 53-56ВА и 53-61 разработан в инициативном порядке КБ Машиностроительного завода им.С.М.Кирова (г.Алма-Ата) по решению директора завода П.Х.Резчика. Без техзадания, НИР и ОКР. Главный конструктор - на стадии эскизного проекта - К.В.Селихов, позже - Гинсбург Д.С. (в некоторых источниках - Гинзбург), заместитель главного конструктора - Барыбин Е.М. Опытная торпеда отстреляна на оз.Иссык-Куль и на Черном море. Авторское свидетельство на торпеду №33583 выдано 22 апреля 1966 г. В 1967 г. проводились испытания торпеды с оптической системой самонаведения, которая оказалась неработоспособной. Официально принята на вооружение в 1969 г. Первая серийная партия в 100 торпед произведена заводом в 1970 г. и отправлена на флот. В 1970-1971 г.г. при эксплуатации торпед во Владивостоке из-за конструктивной недоработки произошел взрыв торпеды с жертвами. Недостатки были исправлены и в 1972 г. серийное производство возобновлено. Торпеда отличалась простотой конструкции и низкой стоимостью при приемлемых ТТХ и массово использовалась в ВМФ СССР.

Конструкция.

1-балласт, 2-заряд ВВ, 3-взрыватели, 4-баллон со зжатым воздухом, 5-бак с пресной водой, 6-бак с керосином,

7-подогревательный аппарат, 8-поршневой двигатель, 9-гироскопический прибор курса

При проектировании торпеды использованы узлы и компоненты серийных торпед:

Кислородный тракт и гидростатический аппарат от торпеды 53-56;
- турбина и кормовое отделение от перекисной торпеды 53-57;
- боевое зарядное отделение с аппаратурой самонаведения и неконтактным взрывателем от перекисной торпеды 53-61;
- практическое зарядное отделение от торпеды 53-61;



Система управления и наведение - на всех модификациях торпеды 53-65 - активная акустическая система самонаведения (ССН) с вертикальным лоцированием кильватерного следа. Главный конструктор Е.Б.Парфенов - удостоин Государственной премии СССР за создание торпеды, ведущий конструктор - Кабин Ю.П. Телеуправление не применяется. Взрыватель неконтактный электромагнитный, ведущий конструктор - Скоробогатов А.Т. Главный конструктор приборов управления - В.А.Пархоменко.

Торпеды 53-65К при проектировании и в ходе модернизации предполагалось оснастить оптической ССН С-380 с наведением по кильватерному следу с высокой степенью защиты от средств акустического противодействия противника. ССН С-380 якобы была принята на вооружение Приказом МО СССР №205 от 20 июля 1964 г. В 1967 г. проводились испытания торпеды с оптической системой самонаведения, которая оказалась неработоспособной.

Глубина хода торпеду управлялась гидростатическим аппаратом и зависела от противодействия силы сжатия пружины аппарата с одной стороны и давления воды с другой. Один оборот ключа в установочной головке при сжатии пружины соответствует 0,33 м заглубления. Выход на заданную глубину хода-ступенчатый, при выходе из ТА надводного корабля торпеда далает "мешок" (заглубляется), горизонтальные рули стоят на стопоре, в положении "на погружение".

От самопроизводльного запуска торпеды существует 5 степеней защиты (в порядке снятия):
1. Запирающие краны (кислородный и воздушный) на блоке клапанов. Открываются вручную перед выстрелом торпеды специальным ключом через специальную горловину ТА.
2. Стопор на гребных винтах. Снимается вручную при погрузке торпеды в торпедный аппарат.
3. Стопоры (2 шт) на пиропатронах камеры сгорания. Снимаются вручную при погрузке в ТА
4. Стопор на замедлителе (только для надводных кораблей). Снимается вручную при погрузке в ТА.
5. МК - машинный кран, открывается автоматически спец. захватом ТА при выхода торпеды из аппарата

Двигатель: 53-65К - тепловой кислородный турбинный двигатель 2ТФ разработки НИИ "Мортеплотехника"; двигатель управляется автоматом выключения, отключающим пропульсивную установку при скорости вращения лопастей турбины более 8 000 об/мин.
Компоненты топлива - керосин, морская вода, кислород
Мощность двигателя - 550 кВт

ТТХ торпеды:

Срок хранения торпед в ТА носителей:
- 3 месяца (53-65, 53-65А, 53-65М)
- 12 месяцев (53-65К, кислородная)

Модификации:
- 53-65К (1969 г.) - базовый вариант торпеды 53-65 с кислородным тепловым двигателем.

53-65К практическая - вариант торпеды 53-65К для учебных стрельб. Практическая торпеда 53-65К отличалась от боевой балластным отсеком емкостью 120 л, охлаждением парогаза перед выхлопом исключили подгорание выхлопных клапанов турбинного отделения, другими доработками для обеспечения непотопляемости практической торпеды. Первая серийная партия в 100 шт выпущена заводом им.С.М.Кирова (г.Алма-Ата) в 1972 г.

Опытная 53-65К - исследования снижения гидродинамического сопротивления с использованием полимерных растворов на торпедах начато в 1967 г. В 1971 г. на базе торпеды СЭТ-65 создана торпеда-лаборатория, которая в момент впрыска раствора увеличивала скорость хода на 7 уз (с 40 уз до 47 уз). Это был рекордный результат того времени. Реализация этого способапотребовала реализации системы подачи в приповерхностный слой раствора полимера. Энергетический эффект с учетом "постоянного" водоизмещения составил 20-25%. Но системы не были приняты на вооружение. Исследования завершились успешными испытаниями на торпеде 53-65К. В итоге, работы были продолжены на исследовательской подводной лодке пр.1710 с полимерной системой снижения сопротивления.

53-65КЭ (1984 г.) - экспортный вариант торпеды, разработки СКБ завода им. С.М.Кирова (г.Алма-Ата).

53-65К мод. (2011 г.) - модернизированный вариант торпеды 53-65К, разработан Машиностроительным заводом им.С.М.Кирова в г.Алма-Ата и предложен Индии и России. Предполагается модернизация ранее выпущенных торпед. Впервые заказчику (ВМС Индии) торпеды показаны на полигоне Иссык-Куль в 2011 г.

Носители: 53-65К - подводные лодки и надводные корабли.

Погрузка торпед.

Подводная лодка британского военно-морского флота "Апхоулдер" ("Союзник")

Подводные лодки безо всякого труда плавают по водной поверхности. Но в отличие от всех остальных кораблей могут опускаться на дно океана и в некоторых случаях месяцами плавать в его глубинах. Весь секрет в том, что подлодка имеет уникальную двухкорпусную конструкцию.

Между ее внешним и внутренним корпусами находятся специальные отделения, или балластные цистерны, которые могут заполняться морской водой. При этом увеличивается полный вес подлодки и соответственно уменьшается ее плавучесть, то есть способность держаться на поверхности. Вперед лодка движется за счет работы гребного винта, а погрузиться ей помогают горизонтальные рули, названные гидропланами.

Внутренний стальной корпус подлодки рассчитан на то, чтобы выдерживать огромное давление воды, которое растет с глубиной. В погруженном состоянии держаться устойчиво кораблю помогают дифферентные цистерны, расположенные вдоль киля. Если надо всплывать, то на подлодке освобождают от воды, или, как говорят, продувают балластные цистерны. Подлодке помогают идти нужным курсом такие навигационные средства, как перископы, радар, (радиолокатор), сонар (гидролокатор) и спутниковые системы связи.

На изображении сверху, показанная в разрезе ударная британская подлодка водоизмещением 2455 тонн и длиной 232 фута может двигаться со скоростью 20 миль в час. Пока лодка находится у поверхности, ее дизельные двигатели вырабатывают электроэнергию. Эта энергия запасается в аккумуляторных батареях и расходуется затем в подводном плавании. Атомные подводные лодки используют ядерное топливо, чтобы превратить воду в перегретый пар для работы ее паровых турбин.

Как погружается и всплывает подлодка?


Когда подлодка находится на поверхности, говорят, что она пребывает в состоянии положительной плавучести. Тогда ее балластные цистерны в основном заполнены воздухом (ближний рисунок справа). При погружении (средний рисунок справа) судно приобретает отрицательную плавучесть, так как воздух из балластных цистерн выходит через выпускные клапаны, и емкости заполняются водой через водозаборные порты. Чтобы двигаться на определенной глубине в погруженном состоянии, на подлодках используют технику уравновешивания, когда сжатый воздух нагнетается в балластные цистерны, а водозаборные порты остаются открытыми. При этом и наступает нужное состояние нейтральной плавучести. Для всплытия (дальний рисунок справа)с помощью сжатого воздуха, хранящегося на борту, выталкивают воду из балластных цистерн.


На подлодке мало свободного места. На верхнем рисунке моряки едят в кают-компании. В правом верхнем углу - американская подлодка в надводном плавании. Справа на фотографии - тесный кубрик, где спят подводники.


Чистый воздух под водой


На большинстве современных подлодок пресную воду делают из морской. И запасы свежего воздуха также делают на борту - разлагая пресную воду с помощью электролиза и освобождая из нее кислород. Когда подлодка курсирует вблизи поверхности, она с помощью прикрытых колпаками шноркелей - приспособлений, выставленных над водой, забирает свежий и выбрасывает отработанный воздух. В этом положении над боевой рубкой лодки оказываются на воздухе, кроме шноркелей, перископ, антенна радиосвязи и другие надстроечные элементы. Качество воздуха на подлодке контролируется ежедневно, чтобы обеспечивать нужное содержание кислорода. Весь воздух проходит через скруббер, или газоочиститель, для устранения загрязнений. Отработавшие газы выходят через отдельный трубопровод.

Введение

Если внимательно изучить историю советского ВМФ, то в глаза бросается именно количественные показатели – советский подводный флот был многочисленным. При этом видно, что основу советского флота составляли не суперподлодки, а простые и дешевые лодки массовых серий.

С середины 60-х по начало 80-х строительство трёх серий многоцелевых атомных лодок проекта 671– 671, 671РТ и 671РТМ общим количеством (15+7+26) 48 единиц – позволило насытить все океанские флоты современными подводными лодками. Шестьсот семьдесят первую серию дополняли ракетоносцы проектов 670А и 670М (11+6 = 17 единиц) спроектированные и построенные на заводе «Красное Сормово» в городе Горьком – небольшие однореакторные кораблики, считавшиеся самыми тихими лодками 2 поколения. Также флот получил весьма специфические Лиры – скоростные подлодки проекта 705 (7 единиц). Это позволило создать к середине 70-х группировку из 70 современных многоцелевых атомоходов.

Хотя лодки и отличалась посредственными характеристиками, благодаря своей многочисленности они обеспечивали Боевую службу ВМФ СССР во всех уголках планеты. Отметим, что именно по этому пути следуют США, строя огромные серии недорогих простых лодок типа Лос-Анджелес (62 лодки), а на данный момент – Вирджиния (план 30, в строю - 11).

Концепция бюджетной атомной подводной лодки
для Российского ВМФ

Академик Спасский в своей статье в журнале «Военный парад» в 1997 году указал, что российскому флоту необходимо около ста подводных лодок. Ориентировочно нужно 15 стратегических ракетоносцев, 15-20 ракетных крейсеров с крылатыми ракетами и 30-40 ДЭПЛ. Остальные лодки (40-50 единиц) должны быть атомными многоцелевыми.

Проблема состоит в том, что в России подобных лодок нет. Строительство АПЛ проекта 971 и 945 прекращено и восстанавливать его не имеет смысла. АПЛ проекта 885 строятся небольшой серией – до 2020 года анонсирована серия 8 единиц. При этом их цена – от 30 до 47 миллиардов рублей и сроки строительства – одной лодки в 5-8 лет не позволяют иметь много таких лодок. Дизель-электрические лодки – которые сейчас модно называть неатомными – слишком малы и не способны ходить в моря надолго. Между лодкой водоизмещением 2000 тонн и лодкой 9500 тонн сейчас нет никаких промежуточных проектов.

Разговоры о необходимости подобной лодки шли давно, однако пока ничего конкретного так и не появилось. Например, предлагались варианты проекта 885 без ракетного отсека, однако быстро выяснилось, что удешевления/увеличения серии/сроков строительства такой проект не даст. Просто за те же деньги флот получит худшую лодку. Также рассматривался вариант «русского Рубиса» - т.е. небольшой лодки с полным электродвижением, однако подобные предложения отвергли сами французы, которые на данный момент строят атомную подводную лодку нормальных размеров. Европейский (например, английский) опыт тоже ничем помочь, не способен.

Поэтому я решил всё-таки самостоятельно разобраться, что же должна собой представлять подобная лодка.

По моему мнению, концепция бюджетной атомной подводной лодки должна быть следующая:

  1. Для снижения массогабаритных характеристик и стоимости атомной силовой установки – уменьшаем потребную скорость полного хода с 31-33 до 25 узлов, что даст снижение максимальной мощности силовой установки в 2,5 раза по сравнению с лодками 3 поколения. Т.е. до 20 тыс. л.с. Дело в том, что когда лодка идет на максимальной скорости она из-за грохота воды теряет как скрытность, так и возможность обнаруживать цели. При этом снижение мощности силовой установки уменьшить вес и потратить сэкономленный вес на усиление вооружения. В нашем случае – на ракетный отсек с 16 ракетами.
  2. Отказ от чрезвычайного количественного дублирования систем, а также от повышенного запаса плавучести (у нас он будет в районе 16%), и спасательной камеры.
  3. Уменьшение по сравнению с лодками 3 поколения максимальной глубины погружения с 600 до 450 метров, что позволит уменьшить массу корпуса.
  4. Полуторакорпусная архитектура – такая же, как на Северодвинске. Однокорпусную архитектуру имеют 2 и 3 отсеки – жилые и управления. Остальные – двухкорпусную.
  5. Вооружение – комбинированное - УВП для ракет и торпедные аппараты для торпед. Причём ТА двух калибров: большого - для боевых торпед и малого - для антиторпед и средств активной постановки гидроакустических помех.
  6. Торпедные аппараты имеют классическое для советского флота расположение – в верхней полусфере в носовой части. Поскольку сейчас лодка имеет не только сферическую антенну в носовой части, но и бортовые конформные антенны.
  7. Лодки должны строиться на заводах второго эшелона в Санкт-Петербурге, Нижнем Новгороде и Комсомольске-на-Амуре, срок строительства серийной лодки - не более трёх лет, стоимость 18-20 млрд. рублей.

Устройство атомной подводной лодки

Многоцелевая атомная подводная лодка проекта П-95 пред­на­зна­че­на для ве­де­ния борь­бы с вражеским судоходством, ко­ра­бель­ны­ми группировками про­тив­ни­ка, под­вод­ны­ми лод­ка­ми, на­не­се­ния уда­ров по бе­ре­го­вым объ­ек­там, осу­ще­ст­в­ле­ния мин­ных по­ста­но­вок, ве­де­ния разведки.

Так же как на лодках 3 поколения все основное обо-ру-до-ва-ние и бое-вые по-сты раз-ме-ще-ны в амор-ти-зи-ро-ван-ных зо-наль-ных бло-ках. Амор-ти-за-ция сильно снижает аку-сти-че-ское по-ле ко-раб-ля, а так-же по-зво-ля-ет обезопасить лодку от подводных взрывов.

Первый отсек - торпедный, в его верх­ней по­ло­ви­не рас­по­ло­же­ны ка­зен­ные час­ти тор­пед­ных ап­па­ра­тов и весь бое­за­пас на ав­то­ма­ти­зи­ро­ван­ных стел­ла­жах. Под ним расположено по­ме­ще­ние cо стой­ками ап­па­ра­ту­ры ра­дио­элек­трон­но­го воо­ру­же­ния, сред­ст­ва вен­ти­ля­ции и кон­ди­цио­ни­ро­ва­ния от­се­к. Под ними - трю­мы и ак­ку­му­ля­тор­ная яма.

Второй и третий отсеки – управления и жилые. На первой и второй па­лу­бах рас­по­ло­же­ны глав­ный ко­манд­ный пост, руб­ки, ап­па­ра­ту­ра бое­вой ин­фор­ма­ци­он­но-управ­ляю­щей сис­те­мы (БИ­УС); третья и четвертая па­лу­бы за­ня­ты жи­лы­ми, об­ще­ст­вен­ны­ми и ме­ди­цин­ски­ми по­ме­ще­ния­ми. В трюме – всевозможное оборудование, сред­ст­ва кон­ди­цио­ни­ро­ва­ния и об­ще­ко­ра­бель­ные сис­те­мы. Во втором от­се­ке раз­ме­ще­ны все подъ­ем­но-мач­то­вые уст­рой­ст­ва, в третьем – дизель-генератор.

Четвёртый отсек – ракетный. В нём расположены 4 прочные шахты в каждой из которых, находиться по 4 транспортно-пусковых контейнера с крылатыми ракетами. Также в отсеке расположено различное оборудование и кладовые.

Пятый отсек - реакторный. Сам реактор со своим оборудованием изолирован от ос­таль­ной лодки био­ло­ги­че­ской за­щи­той. Са­ма ППУ вме­сте с сис­те­мами под­ве­ше­на на кон­соль­ных бал­ках, за­де­лан­ных в пе­ре­бор­ки.

Шестой отсек - турбинный. Состоит из блоч­ной па­ро­тур­бин­ной ус­та­нов­ке и ав­то­ном­ны­ми тур­бо­ге­не­ра­то­ром и хо­ло­диль­ны­ми ма­ши­на­ми па­ро­тур­бин­ной ус­та­нов­ки. Блок че­рез амор­ти­за­то­ры сто­ит на про­ме­жу­точ­ной ра­ме, ко­то­рая че­рез вто­рой кас­кад амор­ти­за­то­ров за­кре­п­ля­ет­ся к специальным стойкам. Также в этом отсеке расположен на специальной амортизированной платформе обратимый электромотор малого хода и муфта позволяющая отсоединять ГТЗА.

Седьмой отсек - вспомогательных механизмов. Через не­го про­хо­дит ва­ло­про­вод с глав­ным упор­ным под­шип­ни­ком в носу и уплотнением гребно­го ва­ла в кор­ме. Отсек двух­па­луб­ный. Также в нем на­хо­дит­ся рум­пель­ное от­де­ле­ние, в котором раз­ме­ще­ны ру­ле­вые гид­рав­ли­че­ские ма­шины, а так­же рум­пе­ли и концы бал­ле­ров ру­лей.

Над вторым и третьим отсека­ми рас­положено ог­ра­ж­де­ние руб­ки и вы­движ­ных уст­ройств. В корме - четыре стабилизатора об­ра­зу­ют кор­мо­вое опе­ре­ние. Ос­нов­ной вход в ПЛ - че­рез ог­ра­ж­де­ние руб­ки. Кро­ме то­го, име­ют­ся вспо­мо­га­тель­ные и ре­монт­ные лю­ки над первым пятым и седьмым отсеками.

Основным движителем является семилопастный малооборотный винт диаметром 4,4 метра. Вспомогательным – две выдвижные колонки мощностью по 420 л.с. обеспечивающие скорость до 5 узлов.

От установки водомётов решено было отказаться из-за меньшего КПД и меньшей эффективности на малых скоростях.


Силовая установка и оборудование

Лодка обладает характеристиками превышающими требования к четвёртому поколению подводных лодок. Т.е. соответствует поколению 4+.

Для обеспечения малой шумности в нашем проекте мы отходим от традиционной для советского флота тяги к силовым установками большой мощности с малым удельным весом. Многоцелевые лодки 2 поколения имели два реактора по 70 мВт и турбину мощностью 31 тысячу лошадиных сил, лодки третьего - 190 мВт и 50 тысяч лошадиных сил. При этом известно, что масса силовых установок 2 и 3 поколений – приблизительно одинакова и находится в районе 1000 тонн (по разным оценкам от 900 до 1100 тонн) – отличается только удельный вес – масса одной лошадиной силы.

Так вот, мы сознательно идём на снижение мощности силовой установки и отказываемся от унификации с силовыми установками других типов. При этом кроме снижения мощности мы ещё и упрощаем схему силовой установки. Такой подход позволяет уменьшить габариты и размеры силовой, увеличив количество оружия, при этом благодаря повышению удельных характеристик – повышается агрегатная надёжность. Плюс поскольку силовая меньшей мощности - она меньше шумит, стоит дешевле и более надёжна.

Силовая установка «Кикиморы» включает:

  • один атомный реактор мощностью 70 МВт, с двумя парогенераторами, по одному насосу первого контура на каждом. Примерно такая схема атомного реактора используется на американских АПЛ типа Вирджиния. Реактор может работать в малошумном режиме с естественной циркуляцией на мощности 20% от номинальной, обеспечивая паром только турбогенератор лодки.
  • один ГТЗА с однокорпусной паровой турбиной и планетарным редуктором мощностью на валу 20000 л.с. При этом, при ходе под турбиной гребной электромотор работает как генератор, что позволяет отключить парогенератор и идти только под одним агрегатом.
  • обратимый гребной электромотор для малошумного хода мощностью 1500 кВт. Установлен перед турбиной, т.е. ГТЗА можно отключить и идти только под турбогенератором и электромотором, а можно наоборот включить ГТЗА и выключить турбогенератор, тогда гребной электромотор работает как генератор. Наличие только одного работающего устройства исключает резонансы и снижает шумность лодки.
  • один малошумный автономный турбогенератор мощностью 3500 кВт. При этом турбогенератор расположен по оси лодки плоскости лодки – под турбиной на одной с ней амортизированной платформе, только снизу. Такая схема – обеспечивает минимизацию шумов издаваемых генератором и позволяет получить при движении под электромотором на малошумном режиме – минимальную шумность. При этом и АТГ и ГТЗА используют каждый собственную арматуру – конденсаторы, холодильники, насосы и т.д. Включая запасы питательной воды. Что позволяет повысить надёжность силовой установки и автономность лодки.
  • один дизель-генератор мощностью 1600 кВт. Расположен в 3 отсеке. Одну большую аккумуляторную батарею в первом отсеке и 3 малых аккумуляторных батареи во 2, 3 и 7 отсеках.

Радиоэлектронное вооружение

Состав радиоэлектронного вооружения вооружения -классический. Лодка имеет на вооружении гидроакустический комплекс с несколькими антеннами и выдвижные устройства. Прием информации от всех устройств и управление оружием осуществляется интегрированной боевой информационно-управляющей системой.

Гидроакустический комплекс подводной лодки состоит из:

  • носовой сферической антенны диаметром 4,4 метра
  • двух бортовых низкочастотных конформных антенн
  • высокочастотной противоминной ГАС в носовой части рубки
  • буксируемой низкочастотной антенны
  • системы неакустического обнаружения надводных кораблей по кильватерному следу

Выдвижные устройства: (с носа в корму)

  • универсальный оптронный перископ – кроме нескольких оптических каналов оснащён лазерным дальномером и тепловизором.
  • многоцелевой комплекс цифровой связи – обеспечивает как наземную, так и космическую связь в нескольких диапазонах.
  • комплекс РЛС/РЭБ – представляет собой многофункциональную РЛС с фазированной антенной решеткой, способной обнаруживать как надводные так и воздушные цели, с дополнительной возможностью ставить помехи.
  • РДП – устройство для работы дизеля под водой.
  • цифровой комплекс пассивной радиотехнической разведки – вместо старых радиопеленгаторов. Имеет более широкий диапазон применения и при этом благодаря пассивному режиму работы – не засекается средствами РТР противника.

Вооружение

Как уже говорилось выше благодаря лёгкой силовой установке и облегченному корпусу лодка имеет чрезвычайно мощное для своих размеров вооружение составляющее 56 единиц оружия при стандартной загрузке. При этом противокорабельные ракеты и противолодочные ракето-торпеды – запускаются из УВП. Из торпедных аппаратов – запускаются торпеды.

Вооружение атомной подводной лодки состоит из:

  • 16 пусковых установок в 4-х прочных шахтах расположенных в районе миделя корабля. Это не «Ониксы», они не влезли по длине. В нашем случае используются в три раза более дешевые твердотопливные ПКР и ракето-торпеды вертикального пуска (они твердотопливные изначально). ПКР имеет массу 2,5 тонны, трансзвуковую скорость и дальность полёта 200 км при БЧ в 450 килограмм, противолодочная ракето-торпеда – имеет дальность 35 км (больше для лодки и не нужно) и боевую часть в виде 324-мм торпеды или подводной ракеты.
  • Четырех 605-мм торпедных аппаратов с боезапасом в 20 торпед – 4 в ТА и 16 на механизированных стеллажах. Увеличение калибра торпед связано с желанием повысить возможности торпеды без увеличения длины. Если обычная советская торпеда имеет калибр 533-мм и длину 7,9 метров, то наша торпеда при практически той же длине (8 метров) толще, тяжелее на тонну (т.е. весит три тонны). В боезапас ходят торпеды двух типов - первая имеет тяжёлую БЧ весом 800 кг (современные супертанкеры настолько огромны, что требуют больших БЧ), вторая - высокую скорость и дальность – 50 узлов/50 км.
  • Также вместо части торпед лодка может принимать до 64 мин различных типов.
  • Четырех 457-мм торпедных аппарата, предназначенных для запуска антиторпед, постановщиков гидроакустических помех, имитаторов и малых противоминных торпед. Боезапас – 4 торпеды в ТА и 16 в два эшелона в механизированных стеллажах. Вместо 16 малых торпед на стеллажи можно принять 4 большие торпеды. Мини-торпеда имеет длину 4,2 метра и массу 450 килограмм, дальность стрельбы до 15 километров, и массу БЧ 120 килограмм.
  • Шести ПЗРК «Игла» с запасом ракет.

Экипаж и обитаемость

Экипаж лодки состоит из 70 человек, в том числе 30 офицеров. Это практически соответствует лодкам проекта 971, где экипаж - 72-75 человек. На лодках проекта 671РТМ и на проекте 885 - около 100 человек. Для сравнения - на американских лодках типа «Вирждиния» экипаж 120 человек, а на Лос-Анджелесах вообще – 140. Весь лич­ный со­став раз­ме­щен в одноместных каю­тах и маломестных кубриках. Для прие­ма пи­щи и дру­гих ме­ро­прия­тий ис­пользует­ся две кают-компании - офи­цер­ская и мичманская. Лодка оснащена ме­ди­цин­ским блоком, ду­ше­выми ка­би­нами и сау­ной. Все жи­лые по­ме­ще­ния рас­по­ло­же­ны во 2-3-ом отсеках на 2 и 3 палубах.

Сравнение с конкурентами

По сравнению со своим прямым предшественником - проектом 671ртм - лодка стала короче почти на 12 метров, толще и потеряла 6 узлов скорости. За счёт снижения веса силовой установки (на 200-250 тонн) появилась возможность усилить вооружение отсеком с противокорабельными ракетами. При практически одинаковом подводном водоизмещении за счёт сокращения запаса плавучести (т.е. воды) на 900 тонн, увеличились обитаемые объемы что позволило поднять условия обитаемости. Шумность - снизилась радикально. Дальность обнаружения малошумных целей - тоже выросла. Автономность осталась на прежнем уровне, но условия размещения экипажа стали лучше, при этом лодка лучше в эксплуатации что позволит повысить коэффициент использования с 0,25 до 0,4.

По сравнению с одноклассником - проектом 885 - лодка проекта П-95 имеет в полтора раза меньшее водоизмещение и в полтора-два (в зависимости от количества кораблей серии) раза меньшую стоимость. Есть мнение что в малошумном режиме при движении под электромотором лодка будет тише даже проекта 885.

Проект П-95 смотрится весьма достойно и на фоне американской лодки типа Вирждиния. По крайней мере в дуэльных ситуациях наш корабль не будет не в чём уступать американскому.

Кикмора Калугина

На основе этого преокта был созда проект АПЛ более соотвествующих реалиям российского флота - проекта К-95К или "Кикимора Калугина". О ней в отдельной статье.